On kites, comets, and stars. Sums of eigenvector coefficients in (molecular) graphs.

Research output: Journal contributionsJournal articlesResearchpeer-review

Authors

Two graph invariants were encountered that form the link between (molecular) walk counts and eigenvalues of graph adjacency matrices. In particular, the absolute value of the sum of coefficients of the first or principal (normalized) eigenvector, s 1, and the analogous quantity s n, pertaining to the last eigenvector, appear in equations describing some limits (for infinitely long walks) of relative frequencies of several walk counts. Quantity s 1 is interpreted as a measure of mixedness of a graph, and s n, which plays a role for bipartite graphs only, is interpreted as a measure of the imbalance of a bipartite graph. Consequently, s n is maximal for star graphs, while the minimal value of s n is zero. Mixedness s 1 is maximal for regular graphs. Minimal values of s 1 were found by exhaustive computer search within the sample of all simple connected undirected n-vertex graphs, n ≤ 10: They are encountered among graphs called kites. Within the special sample of tree graphs (searched for n ≤ 20) so-called double snakes have maximal s 1, while the trees with minimal s 1 are so-called comets. The behaviour of stars and double snakes can be described by exact equations, while approximate equations for s 1 of kites and comets could be derived that are fully compatible with and allow to predict some pecularities of the results of the computer search. Finally, the discriminating power of s 1, determined within trees and 4-trees (alkanes), was found to be high.

Translated title of the contributionÜber Drachen, Kometen und Sterne. Summen von Eigenvektor-Koeffizienten in (molekularen) Graphen.
Original languageEnglish
JournalZeitschrift fur Naturforschung - Section A Journal of Physical Sciences
Volume57
Issue number3-4
Pages (from-to)143-153
Number of pages11
ISSN0932-0784
DOIs
Publication statusPublished - 2002
Externally publishedYes

    Research areas

  • Mathematics
  • Eigenvector Coefficients, Molecular Graphs, Walks

Documents

DOI

Recently viewed

Activities

  1. (University) support programmes and sustainable regional development: Why, how, and with what impact?
  2. Renewing Sustainability Thinking in Light of the Anthropocene: Exploring the Potentials of STS
  3. The distribution of the insensible: Organizational aesthetics in the age of digital reproduction
  4. Journal of International Relations and Development (Fachzeitschrift)
  5. Briefing Note: "Understanding Societal Development and Moral Progress: The Contribution of the World Values Surveys"
  6. Beyond the Family. Spatiality, Modes of (Re)production and Forme of Life
  7. Presentation of the results from the research on the Nature Park Wildeshauser Geest in Hatten and Bassum
  8. Der "als-ob" Modus: Polizei, Protest, Staatlichkeit
  9. Case-based learning in teacher education. Effects on cognition, motivation and ability to analyze
  10. James-Cook-Universität
  11. Restituting Coevalness
  12. Journal of Control Science and Engineering (Zeitschrift)
  13. A Process Perspective on Organizational Failure: A Qualitative Meta-analysis
  14. Journal of Applied Ecology (Fachzeitschrift)
  15. European Federation of Associations and Centres of Irish Studies Roundtable Discussion
  16. Stimmtraining - 2009
  17. Alexander Fay
  18. Morgan O’Hara: Live Transmissions - 2018
  19. Connectivity
  20. Kunst & Vermittlung #16
  21. How effective is participation in public environmental decision-making? Early findings from a meta analysis of 250 case studies
  22. University of the Southern Switzerland, Lugano (CH
  23. Evaluation of a project submitted for financial support to FCT – 2022 CALL FOR R&D PROJECT GRANTS, Portugal: Frederic Dufaux (Chair)