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Two graph invariants were encountered that form the link between (molecular) walk counts and
eigenvalues of graph adjacency matrices. In particular, the absolute value of the sum of coefficients
of the first or principal (normalized) eigenvector,1, and the analogous quantity , pertaining
to the last eigenvector, appear in equations describing some limits (for infinitely long walks) of
relative frequencies of several walk counts. Quantity1 is interpreted as a measure ofmixedness
of a graph, and , which plays a role for bipartite graphs only, is interpreted as a measure of the
imbalance of a bipartite graph. Consequently, is maximal for star graphs, while the minimal
value of is zero. Mixedness1 is maximal for regular graphs. Minimal values of1 were found
by exhaustive computer search within the sample of all simple connected undirected-vertex
graphs, 10: They are encountered among graphs calledkites. Within the special sample of
tree graphs (searched for 20) so-calleddouble snakes have maximal 1, while the trees with
minimal 1 are so-calledcomets. The behaviour of stars and double snakes can be described by
exact equations, while approximate equations for1 of kites and comets could be derived that are
fully compatible with and allow to predict some pecularities of the results of the computer search.
Finally, the discriminating power of1, determined within trees and 4-trees (alkanes), was found
to be high.

Key words: Molecular Graphs; Walks; Eigenvector Coefficients.

Introduction

When chemists talk about molecular structures and
the properties of compounds they often use qualita-
tive and more or less intuitive concepts, such as the
complexity of a structure or the diversity of a set
of structures. It is natural to ask how such concepts
can be rendered quantitative, how something such as
the complexity of a structure can be measured. For
this purpose (among others) the so-called topological
indices (TIs) were introduced [1, 2]. A topological in-
dex is a number associated with a graph or a chemical
structure and derived therefrom by some well-defined
procedure. It is a graph invariant, which means that
its numerical value is independent of how a particu-
lar graph (structure) is drawn or how its vertices are
numbered. Hundreds of TIs have been defined, some
purposefully designed, some obtained by mathemati-
cal manipulations on already existing definitions, and
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so it became legitimate to conversely ask for the mean-
ing of a particular TI. This issue is even more urgent
if a graph invariant was not constructed by man but
was simply uncovered, existing but having gone un-
noticed hitherto. In the present work we deal with two
such graph invariants which we encountered during
our study of walks in molecular graphs.

Definitions

In this work some mathematical properties of two
very simple and quite “natural” graph invariants will
be investigated, sums of the coefficients of eigenvec-
tors of the adjacency matrix of an-vertex graph: 1
is the sum of coefficients of the first (principal) eigen-
vector, while is the sum of coefficients of the last
eigenvector (if unambiguously defined).

Relations between atomic and molecular walk
counts, eigenvalues and eigenvector coefficients, and
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spectral moments have been known for a long time
and are described in due detail [3 - 5]. Here the most
important formulas are only repeated without proofs.
Notations are as in our previous papers, where also
the method of proofs can be found. Throughout this
paper all graphs are assumed to be connected, which,
of course, is an obligatory property of any molecular
graph.

Let A be the adjacency matrix of a simple con-
nected undirected graph G with vertices. A then
is the ’th power of A, its elements are denoted ( ).

As is well-known, ( ) ( = 1, , ) is to be inter-
preted as the number of walks of length starting at
vertex and ending at vertex .

The atomic walk count of length of vertex ,
awc ( ), sometimes named the extended degree of
of order , is the ’th row (or column) sum of the
matrix A ,

awc ( ) =
=1

( )

The molecular walk count of length , mwc , is
the sum of all atomic walk counts in A ,

mwc =
=1

awc ( )

Further, let us consider for each vertex the num-
ber of its self-returning walks of length , denoted
swc ( ),

swc ( ) = ( )

and the total number of self-returning walks of length
k in the graph (molecule),

swc =
=1

( )

The atomic indices awc ( ) and swc ( ) may be inter-
preted as measures of the centrality or involvedness of
vertex within the graph [3, 5 - 7], while the molec-
ular indices mwc und swc measure a molecule’s or
graph’s complexity [8, 9].

There are tight connections between the fundamen-
tal graph features walks on the one hand and the eigen-
values and eigenvectors of the adjacency matrix on
the other. Let 1 > 2 be the eigenvalues
of A and let 1, , be an orthonormal basis

of eigenvectors of A, where is the eigenvector
associated with . Further, let

=
=1

and = 2

be the sum of coefficients of the ’th eigenvector and
its square, respectively. We shall always choose the
signs of the coefficients of the eigenvector so that

is non-negative.
Obviously, these definitions are unambiguous (ex-

cept for the sign of ) unless the eigenvalue is
degenerate, that is at least for = 1. In the case
of degenerate eigenvalues, the eigenvectors are not
uniquely determined; for this case it can be shown
that the sum of over the indices belonging to the
same eigenspace is uniquely determined [4, 10]. In the
following we demonstrate that and appear in for-
mulas describing the relations between walk counts,
eigenvalues, and eigenvectors.

Walk counts may be described using eigenvalues,
eigenvector coefficients and sums of eigenvector co-
efficients as follows [3]:

( ) =
=1

awc ( ) =
=1

swc ( ) =
=1

2

swc =
=1

= Trace(A )

mwc =
=1

These relations are referred to as spectral decomposi-
tion [4]. Walk counts primarily depend on the power
(length) . Measuring the centrality of two vertices
and by awc ( ), awc ( ) or swc ( ), swc ( ), one
observes in some cases a converging (or not so) oscil-
lation of the relative ranks of particular vertices and

from one to the next. Therefore it is appropriate to
have approaching infinity, that is to consider walks
of infinite length.
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Some Limits of Walk Shares

Cvetković and Gutman [11] defined a sequence
( ) N of topological indices

= (mwc )1

may be considered as the mean extended connec-
tivity of order (mean over all vertices). Using the
technique of spectral decomposition, these authors
showed that the sequence ( ) N converges against
the principal eigenvalue 1:

lim ( ) = 1

In this sense 1 is the “ long term” average degree;
Cvetković and Gutman dubbed 1 the “dynamic de-
gree” . In a less rigorous manner one can view this
dynamic degree as follows. If one makes a long ran-
dom walk in the respective graph, and records the
degrees of the vertices encountered, then the average
value of these vertex degrees is 1.

Consider now the sequence

= mwc 1 =
=1

( 1)

and distinguish two cases:

Case 1. 1 > , the case of nonbipartite (connected)
graphs. Then we have:

lim ( ) = 1

This means that mwc is of the same order as 1 . This
statement is similar to the above result.

Case 2. 1 = , i. e. = 1. This happens in
any connected bipartite graph, that is in a tree or in a
cyclic graph without odd-membered cycles.

In this case, for approaching infinity two sum-
mands remain, one of which, belonging to the smallest
eigenvalue , has an alternating sign [3]. Therefore
we have to consider two partial sequences, one for
even, and another for odd , resulting in

lim ( 2 1) = 1

lim ( 2 ) = 1 +

These two limits coincide if and only if = 0 , as
it happens e. g. for even-membered chains [3] and for

Table 1. Limits of quotient series of walks, non-bipartite
case ( 1 > ).

Enumerator Denominator
swc awc ( ) mwc 1

swc ( ) 2
1 1 1

2
1 1

2
1

swc 1 – 1/ 1 1
awc ( ) – 1 1 1 1 1
mwc – – 1 1

regular graphs [11]. Both results back the interpreta-
tion of 1 as dynamic degree, and attract our attention
to 1 and . The odd / even case discrimination
is typical for the procedure in considering limits of
walk counts in bipartite graphs, to be done in the next
section.

We now apply spectral decomposition to some se-
quences of quotients which can be interpreted as rel-
ative walk frequencies in a totality of similar walks.
The exact procedure was described [3] for the se-
quence

( ) = awc ( ) mwc

where ( ) is the relative frequency of walks of length
starting at vertex among all walks of that length.

Similar sequences, constructed analoguously, are

swc ( )/swc , the frequency of self-returning
walks of length of vertex among all self-returning
walks of that length,

swc ( )/awc ( ), the frequency of self-returning
walks of length of vertex among all walks of that
length starting at vertex ,

swc ( )/mwc , the frequency of self-returning
walks of length of vertex among all walks of that
length,

swc /mwc , the frequency of self-returning
walks of length among all walks of that length.

For the transition in the bipartite case it
is always necessary to distinguish between odd and
even . Table 1 for (connected) non-bipartite graphs
and Table 2 for (connected) bipartite graphs contain
the results for the above as well as for other similar
quotients. Parts of these results have appeared in [5a]
already.

Quantities 1 and as Graph Invariants

The appearance of 1 (or 1 = 2
1) and (or =

2 ) in the above Tables (the latter in the bipartite
case only) suggests to look at the behaviour and the
meaning of these graph invariants more closely.
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Table 2. Limits of quotient series of walks, bipartite case ( = 1).

Enumerator Denominator
swc awc ( ) mwc 1

swc ( ) evena 2
1 2 2

1 ( 1 1 + ) 2 2
1 ( 1 + ) 2 2

1

swc evena 1 – 2 ( 1 + ) 2

awc ( ) odd – 1 ( 1 1 ) ( 1 ) 1 1

even – 1 ( 1 1 + ) ( 1 + ) 1 1 +

mwc odd – – 1 1
even – – 1 1 +

a For (connected) bipartite graphs the coefficients of the first and last eigenvector differ in sign only, thus 2
1 = 2 for all . Furthermore

swc = 0 for odd .

Graph Invariant 1 as a Measure of Mixedness of
a Graph

The following is observed at least in the non-bi-
partite case (Table 1): First, a graph with given prin-
cipal eigenvalue 1 contains the more walks, the larger

1. Second, the reciprocal 1
1 measures the share of

self returning walks among all walks. Accordingly, a
large 1 implies a small share of self returning walks,
or a high probability that a randomly chosen walk
ends at a vertex other than its origin. For these facts
we consider 1 as a measure of the mixedness of a
graph. This interpretation is backed by the observa-
tion that 1 is closely related to the variance of the
eigenvector coefficients 1 in an inverse way:

Var( 11 1 ) =
1

1
2
1

1
1

2

= ( 1) ( ( 1))

Since 1 1, the limit of the sequence (awc ( )/
mwc ) N, can be interpreted as the contribution of
vertex to the total number of walks (see Table 1),
a small variance of the eigenvector coefficients 1

means a rather equal distribution of all walks over
individual vertices, that is a high mixedness. As is
easily seen, this variance assumes its minimum 0 if
all coefficients 1 are mutually equal, wherefore

1 = 1

is necessary and thus

1 = 1 = and 1 =

This is the case if and only if G is a regular graph.
Regular graphs therefore are maximally mixed.

There is another aspect of that topic. Let =
(1,...,1)T be the “space diagonal” in . Then

1 = T
1

is the scalar product of the principal eigenvector and
, and by 1 = 1

1 = T
1 1 = cos( 1 )

is the cosine of the angle between 1 and in .
Its value is maximal (i. e. 1) if 1 und are collinear
(if the graph is regular), and small for those graphs
whose principal eigenvector is almost perpendicular
to , that is has very different coefficients.

Graph Invariant as a Measure of the Imbalance
of a Bipartite Graph

While the interpretation of 1 as a measure of
mixedness is cogent for non-bipartite graphs, bipar-
tite graphs present difficulties in the following two
facts: First, for calculating a vertex’s share of the
walks, walks of odd and even lengths have to be dis-
tinguished. Second, both limits depend on 1 and
on .

In the following we show that is always smaller
than 1, and we characterize the graph with maximal

for given .

Proposition. For (connected) bipartite graphs the fol-
lowing holds:

(i) < 1.
(ii) For fixed , the graph with maximal is the star.
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Proof: Since the graph is bipartite and connected,
= 1 with nondegenerate , and 2 = 2

1 for
all vertices = 1, , , that is, the coefficients of the
principal and of the last eigenvector differ by sign if at
all, and all coefficients of 1 have equal sign. Without
loss of generality we may assume 1 > 0 for = 1, ...,

. Then from the orthogonality of the eigenvectors 1
and it follows that

0 = 1 =
I+

2
1

I

2
1 , ( )

where the vertex sets I+ = : > 0 and I =
: < 0 form that partition of the vertex set

1, , induced by the graph's bipartiteness. On
the other hand, since 1 is normalized,

1 =
=1

2
1 =

I+

2
1 +

I

2
1 ( )

By adding (or subtracting, respectively) ( ) and ( ),
we obtain:

I+

2
1 =

I

2
1 =

1
2

( )

If we now set

+ =
I+

1 and =
I

1 ( + 0)

it follows that

1 = 2
1 = ( + + )2 and = 2 = ( + )2

and therefrom

1 = 4 + 0

whereby (i) is proven.
In order to prove the second statement, we have to

show that the difference + is maximal for the
star.

By ( ) the sums of squares of the eigenvector co-
efficients over each of the two index sets are constant
and equal to 1/2. Therefore the sum + is maximal if
all 1 ( I+) are identical, say 1 = +.

Let + be the cardinality of I+, the cardinality
of I . Since 1 = , + and are positive and =

+ + . By ( ), we have

+
2
+ =

1
2

, that is + = 1 2 +

Fig. 1. Some graphs mentioned in the text.

and by definition

+ = + + and therefore + = + 2

Thus + is maximal for + as large as possible, and
this is the case of + = 1 and = 1. If one index
set consists of a single vertex and the second of all
other vertices, then the graph is a star (Fig. 1, top left),
and the following is true:

= ( + )2 = 1 1
2

2

1 = ( + + )2 = 1 + 1
2

2

The proof of the proposition is now complete.

As was shown in the proof, is the larger the
more different are the numbers of vertices of the two
vertex sets of a bipartite graph. The more different
the numbers of vertices are, the more different are the
mean degrees within the two sets. The larger is, the
more different also are the limits of the odd and even
walk sequences in Table 2. Therefore it seems natural
in a bipartite graph to consider as a measure of the
imbalance between both vertex sets and also between
walk counts of odd and even length (Fig. 2), or simply
of the imbalance of the graph itself. In this sense the
star is the most imbalanced among all graphs of a
given number of vertices.

What does large imbalance mean? As mentioned
above, large imbalance means large differences be-
tween the odd and even limits in Table 2, so that,
for example, the weight of a certain vertex within
the graph, measured by awc ( )/mwc , oscillates for
increasing [3].

Where the difference between odd and even limit
is marked (as is extremely found for the star), it seems
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Fig. 2. Molecular walk counts
of stars with vertices ( = 4,
..., 10).

natural to define the share of a vertex among the total
number of walks as the average of the odd and even
limits, as suggested by us earlier [3]. Let

odd( ) = lim
odd

(awc ( ) mwc )

even( ) = lim
even

(awc ( ) mwc )

and

( ) = [ odd( ) + even( )] 2

We insert the values of odd (i) and even (i) from
Table 2, and taking into account 2 = 2

1 we obtain
after some transformations

( ) = 1

1
with =

2
1 1 + 2

2
1 1 + 2

3

1

In this formula, the plus sign holds for vertices with
= 1 , while the minus sign holds for those with
= 1 . If 3

1 , 3
1 may be neglected,

and we obtain 1 and so

( ) 1 1

as in the non-bipartite case. If on the other hand
1, then this relation is not even approximately valid,
as shown by the counterexample of the star.

Example. Let us consider the star on n vertices. Its
central vertex is labeled by number one. It can be
shown that for the central vertex

odd(1) =
1
2 even(1) =

1

while for vertices 2, ,

odd( ) =
1

2( 1) even( ) =
1

Then we have for the central vertex

(1) =
+ 2

4

and for the outer vertices > 1

( ) =
3 2

4 ( 1)

For we obtain the share of the central vertex
= 1 to be 1/4, and therefore that of all other vertices

taken together to be 3/4. Considering, on the other
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hand, the coefficients of the principal eigenvector we
see:

11 = 1 2 1 = 1 2( 1) for 1

that is

1
= 11

1
= 1 + 1

1

0 for (share of the central vertex)

and

+

1
=

( 1) 1

1
= 1 + 1 1

1

1 for (share of the outer vertices).

The imbalance of the star graph, measured as , is
so marked that the central vertex for large stars (large

) bears a share of 1/2 (odd limit), close to 1/4 (mixed
limit), or close to 0 (even limit), depending on the
weighting scheme. For the star of Fig. 1 ( = 7),
is 1,02494. In a somewhat less marked manner one
finds the same for other imbalanced graphs such as
K2 5 (Fig. 1, top middle, = 0.58114).

We now seek for those bipartite graphs whose
value is minimal. As already mentioned, the minimal
value of is zero, found e. g. for chain graphs of
even . This is a special case, to be generalized to
such graphs of even that contain for each vertex
from vertex set 1 an equivalent (by symmetry) vertex
from vertex set 2. For an example see the even-memb-
ered double snake in Fig. 1, top right. The correspond-
ing coefficients of eigenvector differ in sign only,
cancelling one another and leaving = 0. This fits
to the interpretation of as imbalance of a bipartite
graph. However, there are bipartite graphs with = 0
outside of this group, even such with odd number of
vertices. A few examples are shown in Fig. 1, bottom
line.

The two graph invariants 1 and for bipartite
graphs are almost not intercorrelated, as shown in
the samples of all connected bipartite graphs with

= 7 ( = 44, = 0 257) and = 8 ( = 182,
= 0 304).

Some Properties of 1

Though the meaning of 1 is not completely clear
for very imbalanced graphs such as the stars, we
con- tinue to interpret it as a measure of the graph’s

Fig. 3. Graphs with minimal 1 for fixed .

“mixedness” . In this section we consider the distri-
bution of 1 within classes of graphs with a fixed
vertex count , and in particular we look for graphs
extremal (maximal or minimal) with respect to 1
within a class. First we treat the class of all con-
nected graphs on vertices, then the class of -vertex
trees.

Connected Graphs of Extremal 1

As mentioned above, 1 is maximal for given if
and only if all degrees are identical, i. e. the graph is
regular, independently of its degree. In this case all
coefficients of the principal eigenvector are equal and
their variance is zero. Examples are the -cycle, C ,
and the complete graph of vertices, K .

The question for graphs with minimal 1 within
a class of graphs of constant vertex number is more
interesting and less easy to answer. Because

1 =
=1

1

2

=1

2
1 = 1

1 has unity as a lower bound. However, 1 could be
equal to 1 only if there would be one 0 with 1 0 = 1
and 1 = 0 for all other ; such a constellation is
impossible because 1 0 for all .

By a computer search including all simple con-
nected graphs with up to 10 vertices (nearly 12 mil-
lion graphs) the graphs shown in Fig. 3 were found to
have minimal 1 within a class of fixed .

All graphs in Fig. 3 consist of a head and a tail
such that the head is a complete graph on vertices
( = 3 or 4), and the tail is a chain of the remaining

vertices. For obvious reasons we call graphs of
this kind k-kites. It is plausible that extremely irregular
graphs (those of very low mixedness) are formed from
a very complex building block (the head) and a very
simple building block (the tail). Choosing the correct
size of the head is not so obvious, and for this
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Fig. 4. Minimum of 1 for
given number of vertices by
number of cycles .

reason we calculated 1 for several kites of head size
between 3 and 8 (see Table 3). Surprisingly, among
all kites considered (with the exception of 5),
i. e. for = 6, 7, 8, 9, 10, 11, 12, 20, 50, 99 and
199, the 4-kite was always found to be the one of
minimal 1.

Further, we empirically examined the minimum
of 1 among simple connected undirected graphs on

10 vertices as a function of the number of cycles .
The above results were confirmed, as illustrated in
Figure 4.

For each 6 the minimum value of 1 is found
for = 3, the cycle number of the 4-kite. For larger
, the minimally mixed graphs tend to have larger 1

values. The most complex graph in each -class, i. e.
that with maximal number of cycles, is the complete

graph K with = 1
2

= ( 1)( 2) 2,

which, as a regular graph, clearly has the maximal

1 value in its class. Note the lack of smoothness of
all curves at cycle numbers belonging to complete
graphs.

In order to understand the special position of 4-kites
we derived approximations for the principal eigen-
value 1 and for 1 of -kites ( > 2) which will be
given here without proof.

(Step I) For the principal eigenvalue 1 and for
the following holds:

1
1
2

3 + ( 1)
+ 2

2

Approximate values obtained using this formula are
very close to the exact ones for = 12 already, as
shown in Table 4. Moreover, we can see that

lim ( 1( ) ( 1)) = 1

and so 1 is of order 1, as is also seen in Table 4.

(Step II) All vertices within the kite’s head are
equivalent by symmetry, with the exception of the
vertex bearing the tail. Therefore the eigenvector co-
efficients belonging to these vertices are identical,
say . For high values of the following approxima-
tion holds:

2 1 + ( 1 + 2)2

+ [ 1( 1 + 2) ( 1)]2 1
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Table 3. 1 for kites by vertex number , head size , and
number of cycles (row minimum is printed in bold).

: 3 4 5 6 7 8
: 1 3 6 10 15 21

3 1.73205
4 1.93892 2.00000
5 2.08516 2.13935 2.23607
6 2.21247 2.20857 2.33511 2.44949
7 2.29803 2.23865 2.36947 2.52392 2.64575
8 2.35839 2.25064 2.37959 2.54345 2.70415 2.82843
9 2.39966 2.25520 2.38237 2.54781 2.71642 2.87579
10 2.42713 2.25690 2.38311 2.54873 2.71863 2.88405
11 2.44504 2.25753 2.38330 2.54893 2.71901 2.88531
12 2.45654 2.25776 2.38336 2.54897 2.71908 2.88549

20 2.47556 2.25789 2.38337 2.54898 2.71909 2.88552
50 2.47598 2.25789 2.38337 2.54898 2.71909 2.88552
99 2.47598 2.25789 2.38337 2.54898 2.71909 2.88552
199 2.47598 2.25789 2.38337 2.54898 2.71909 2.88552

2.58230 2.26434 2.38470 2.54941 2.71927 2.88561

* Approximated (step IV).

Table 4. 1 for kites by vertex number , head size , and
number of cycles .

: 3 4 5 6 7 8
: 1 3 6 10 15 21

3 2.00000
4 2.17009 3.00000
5 2.21432 3.08613 4.00000
6 2.22833 3.09651 4.05137 5.00000
7 2.23321 3.09787 4.05480 5.03404 6.00000
8 2.23499 3.09805 4.05503 5.03547 6.02420 7.00000
9 2.23566 3.09807 4.05505 5.03553 6.02490 7.01809
10 2.23591 3.09808 4.05505 5.03553 6.02492 7.01847
11 2.23601 3.09808 4.05505 5.03553 6.02492 7.01848
12 2.23605 3.09808 4.05505 5.03553 6.02492 7.01848

20 2.23607 3.09808 4.05505 5.03553 6.02492 7.01848
50 2.23607 3.09808 4.05505 5.03553 6.02492 7.01848
99 2.23607 3.09808 4.05505 5.03553 6.02492 7.01848
199 2.23607 3.09808 4.05505 5.03553 6.02492 7.01848

2.23607 3.09808 4.05505 5.03553 6.02492 7.01848

* Infinity (step I).

(Step III) It can be shown that the principal eigen-
vector coefficient sum 1 can be calculated exactly
(i. e., by using the exact value of ) as

1 =
[( 2) 1 1] 0

1 2

where 0 is the coefficient belonging to the terminal
vertex in the chain (maximal distance from the kite’s
head). For large , 0 is nearly zero.

(Step IV) Inserting approximation (I) for 1 and
approximation (II) for into (III) and neglecting 0
leads to an approximation for 1 for .

The 1 values so estimated are in good accordance
with those obtained by computer, at least for 4
(see Table 3). The foremost result is that 1 and 1
converge for , in other words they are indepen-
dent of or the tail’s length . The approximation
further predicts that for large values of (i. e., starting
with = 5), the smallest 1 or 1 is that for = 4,
as was observed. Note that these considerations do
not imply any statement on other classes of graphs
(non-kites).

We examined the statistical distribution of 1 for all
853 distinct connected simple graphs with = 7. As
mentioned above, all values were found to lie between
2.23865 (4-kite) and 7 = 2.64575 (regular graphs),
with mean 2.53611 and standard deviation 0.06845.

Trees of Maximal 1

While among cyclic graphs 1 is maximal for reg-
ular graphs, a tree obviously cannot be regular, with
exception of the trivial trees of = 1 or 2. A candidate
for a tree with rather equal distribution of eigenvector
coefficients, i. e., of large 1, might be the chain (path)
graph of vertices. It is, however, known that in path
graphs the interior vertices are associated with large
eigenvector coefficients, the exterior ones with very
small coefficients [4]. The variance of the coefficients
therefore is considerable, the chain's mixedness is low.
It was therefore tempting to equalize eigenvector co-
efficients by attaching short branches at both ends of a
chain (Fig. 1, top right). This modification was more
successful than initially expected, in that all graphs
obtained in this manner (we call them double snakes)
were found to have no more than two distinct princi-
pal eigenvector coefficients each, i. e., their principal
eigenvector is

(
1
2

1
2

1 1 1 1
1
2

1
2

)T

with a normalizing factor of ( 3) 0 5, associated
with the eigenvalue 1 = 2. From this we obtain

1 =
( 2)2

3

From this formula the variance of the eigenvector
coefficients can be calculated [4]. It approaches zero
for increasing (“almost all coefficients are equal” ).



152 G. Rücker et al. · On Kites, Comets, and Stars

Table 5. 1 for comets by vertex number and central vertex
degree (row minimum is printed in bold).

: 2 3 4 5 6 7 8
( -Alk- (Snakes)

anes)

2 1.41421
3 1.70711
4 1.94650 1.93185
5 2.15470 2.13099 2.12132
6 2.34190 2.31281 2.28550 2.28825
7 2.51367 2.48138 2.42522 2.42540 2.43916
8 2.67347 2.63927 2.54201 2.52910 2.55595 2.57794
9 2.82360 2.78829 2.63779 2.60256 2.63427 2.67920 2.70711
10 2.96569 2.92979 2.71480 2.65182 2.68182 2.74010 2.79628
11 3.10095 3.06480 2.77550 2.68344 2.70871 2.77256 2.84498
12 3.23032 3.19414 2.82248 2.70307 2.72320 2.78860 2.86826

20 4.11807 4.08437 2.94710 2.73167 2.73855 2.80249 2.88604
50 6.42751 6.40269 2.95680 2.73205 2.73861 2.80252 2.88605
99 9.00242 8.98391 2.95680 2.73205 2.73861 2.80252 2.88605
199 12.73213 12.71876 2.95680 2.73205 2.73861 2.80252 2.88605

2.95680 2.73205 2.73861 2.80252 2.88605

* Approximated (step IV).

Table 6. 1 for comets by vertex number and central
vertex degree .

: 2 3 4 5 6 7 8
( -Alk- (Snakes)

anes)

2 1.00000
3 1.41421
4 1.61803 1.73205
5 1.73205 1.84776 2.00000
6 1.80194 1.90211 2.07431 2.23607
7 1.84776 1.93185 2.10100 2.28825 2.44949
8 1.87939 1.94986 2.11199 2.30278 2.48849 2.64575
9 1.90211 1.96157 2.11688 2.30725 2.49721 2.67624 2.82843
10 1.91899 1.96962 2.11917 2.30869 2.49931 2.68190 2.85308
11 1.93185 1.97538 2.12026 2.30917 2.49983 2.68301 2.85697
12 1.94188 1.97964 2.12080 2.30932 2.49996 2.68327 2.85761
20 1.97766 1.99317 2.12132 2.30940 2.50000 2.68328 2.85774
50 1.99621 1.99897 2.12132 2.30940 2.50000 2.68328 2.85774
99 1.99901 1.99974 2.12132 2.30940 2.50000 2.68328 2.85774
199 1.99975 1.99994 2.12132 2.30940 2.50000 2.68328 2.85774

2.00000 2.00000 2.12132 2.30940 2.50000 2.68328 2.85774

* Infinity (step I).

In this sense double snakes seem to be the "most
regular trees", and the double snake of infinite length
is the most regular among these.

Trees of Minimal 1

Here, as in the case of general graphs, we concen-
trate on graphs consisting of a heavy head and a long

Fig. 5. Trees with minimal 1 for fixed .

tail. In this case also we first undertook a complete
computer search within all trees of a particular up
to = 20. The result of the search, i. e., the tree with
minimal 1 in the respective class, is shown in Fig-
ure 5. We call trees of this kind, consisting of a star
with degree and a chain, k-comets. Table 5 contains

1 values of several comets, Table 6 the correspond-
ing principal eigenvalues 1. The central vertex of the
minimal 1 comet has degree 4 up to = 7, from

= 8 onwards the degree is 5, as is seen in Table 5
for = 11, 12, 20, 50, 99, 199.

As in the case of kites, we derived formulas for
comets. Let be the number of vertices and the
degree of the central vertex.

(Step I) The following approximation of the prin-
cipal eigenvalue 1 holds for 2 and for :

1
1

2
(1)

Exact 1 values for the comets depicted in Fig. 5 are
found in Table 6.

(Step II) Since the primary vertices in the comet’s
head are all equivalent by symmetry, all the eigenvec-
tor coefficients associated with them have to be iden-
tical, say . By considering the eigenvector equations,
for large a formula including all coefficients of the
principal eigenvector can be derived over a geometri-
cal series as a function of , and thence finally

2 3
2( 1)( 2)

( 3 large) (2)

(Step III) It can be shown that for the principal
eigenvector coefficient sum 1 the following holds:

1 =
[( 2) 1 ( 1)] 0

1 2
( 3) (3)
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Table 7. Discriminating power of 1 for trees and alkanes.

# Trees # Distinct Reso- # Alkanes # Distinct Reso-

1 values lution 1 values lution

6 6 6 1 5 5 1
7 11 11 1 9 9 1
8 23 23 1 18 18 1
9 47 47 1 35 35 1

10 106 106 1 75 75 1
11 235 235 1 159 159 1
12 551 550 0.998 355 354 0.997
13 1301 1297 0.997 802 798 0.995
14 3159 3153 0.998 1858 1853 0.997
15 7741 7722 0.998 4347 4332 0.997
16 19320 19257 0.997 10359 10311 0.995
17 48629 48475 0.997 24894 24781 0.995
18 123867 123494 0.997 60523 60262 0.996
19 317955 316953 0.997 148284 147627 0.996
20 823065 820567 0.997 366319 364788 0.996

(Step IV) Inserting approximations (1) and (2) for

1 and , respectively, into (3) and neglecting 0
yields as limit for 1 for :

1 =
1 3 2 1

2 1 2 2
( 3) (4)

These limits are approached rather rapidly for the
comets (for = 50 the error is less than 0.000005).
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[10] C. Rücker and G. Rücker, J. Math. Chem. 9, 207
(1992).
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In particular (4) reveals that the minimum 1 value for
7 is in fact found for = 5, again (as for the kites)

independently of the tail’s length. Thus for 7 the
5-comet is, somewhat surprisingly, the least mixed
comet. (These considerations do not state anything
about trees of different type, i. e., non-comets.) 2- and
3-comets (n-alkanes and so-called snakes) are special
cases, in that for their more regular structures their

1 values are considerably higher than those of other
comets.

Discriminating Power of 1 for Trees and for
Alkanes

The discriminating power of 1 was determined
for simple tree graphs and for 4-trees (alkane graphs).
Eigenvector coefficients and their sums were calcu-
lated as double-precision numbers, for comparison of
s1 values ten decimal places were used, values were
compared within each class of constant . Results are
shown in Table 7. First degeneracies appear within
trees and alkanes at = 12 (dodecanes), as is the
case with Balaban’s index [12]. However, there are
fewer degeneracies for 1 than for , e. g. for the 355
topologically distinct alkanes of = 12 there are 349
distinct values and 354 distinct 1 values.


