MEX vocabulary: A lightweight interchange format for machine learning experiments
Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
Authors
Over the last decades many machine learning experiments have been published, giving benefit to the scientific progress. In order to compare machine-learning experiment results with each other and collaborate positively, they need to be performed thoroughly on the same computing environment, using the same sample datasets and algorithm configurations. Besides this, practical experience shows that scientists and engineers tend to have large output data in their experiments, which is both difficult to analyze and archive properly without provenance metadata. However, the Linked Data community still misses a lightweight specification for interchanging machine-learning metadata over different architectures to achieve a higher level of interoperability. In this paper, we address this gap by presenting a novel vocabulary dubbed MEX. We show that MEX provides a prompt method to describe experiments with a special focus on data provenance and fulfills the requirements for a long-term maintenance.
Original language | English |
---|---|
Title of host publication | Proceedings of the 11th International Conference on Semantic Systems, SEMANTiCS 2015 |
Editors | Axel Polleres, Sebastian Hellmann, Josiane Xavier Parreira |
Number of pages | 8 |
Publisher | Association for Computing Machinery, Inc |
Publication date | 16.09.2015 |
Pages | 169-176 |
ISBN (electronic) | 9781450334624 |
DOIs | |
Publication status | Published - 16.09.2015 |
Externally published | Yes |
Event | 11th International Conference on Semantic Systems, SEMANTiCS 2015 - Vienna University of Economics and Business (WU), Vienna, Austria Duration: 16.09.2015 → 17.09.2015 https://2015.semantics.cc/ |
Bibliographical note
Horizon 2020 Framework Programme
Funding number: 644055
- Data Provenance, Interchange Format, Machine Learning Experiments, Vocabulary
- Informatics
- Business informatics