Lizard distribution patterns in the Tumut Fragmentation "Natural Experiment" in south-eastern Australia
Research output: Journal contributions › Journal articles › Research › peer-review
Authors
Lizard distribution patterns were examined in a fragmented plantation landscape in south-eastern Australia. Regression modelling was used to relate ecological variables to (1) lizard species richness, (2) lizard species composition, and (3) the presence or abundance of selected lizard species. Ecological variables covered four broad domains that affect animals: climate, space, shelter and food availability. Lizard species richness was highest at mid-elevation sites, and at locations with a large amount of native forest within 1000 m. A major change in lizard species composition was associated with elevation, the proportion of native forest within 1000 m of a site, and the abundance of springtails. The change in species composition coincided with a range of individualistic responses to environmental conditions by different lizard species. For example, with respect to shelter availability, old logs were related to the garden skink Lampropholis guichenoti, shrubs were related to the delicate skink L. delicata, and rocks were related to the red-throated skink Bassiana platynota. The garden skink was most abundant at low elevations, the delicate skink was most likely to occur at intermediate elevations, and the mountain log skink Pseudemoia entrecasteauxii was most likely to occur at high elevations. The garden skink was most abundant in areas surrounded by little native forest, whereas Maccoy's skink Nannoscincus maccoyi and Coventry's skink Niveoscincus coventryi were more abundant or likely to occur in areas whose context was dominated by native forest. Because animal species may respond individualistically to gradients of climate, space, shelter and food availability, continuum theory (as developed for plant ecology) may be a useful complement to fragmentation theory to explain distribution patterns. To maintain lizard diversity in the study area, it will be important to maintain maximum habitat heterogeneity at the landscape and microhabitat scales. For species otherwise threatened by plantation development, large, fairly undisturbed areas of eucalypt forest will be particularly important.
Original language | English |
---|---|
Journal | Biological Conservation |
Volume | 123 |
Issue number | 3 |
Pages (from-to) | 301-315 |
Number of pages | 15 |
ISSN | 0006-3207 |
DOIs | |
Publication status | Published - 01.06.2005 |
Externally published | Yes |
Bibliographical note
Funding Information:
Funding for this research was obtained by the Ecological Society of Australia, the Royal Zoological Society of New South Wales and the Linnean Society of New South Wales. We are grateful to staff of NSW State Forests for supporting this research, particularly M. Pope, R. Davies, J. Vincent and E. Merrett. We also thank everyone who has helped with the setup of pitfall traps and surveys. We thank M. Austin for useful discussions on the continuum concept. Comments by Y. Haila, G. Daily, H. Possingham, D. Saunders and two anonymous referees helped to improve earlier versions of this manuscript. Ethics approval for this study was obtained by the Animal Experimentation Ethics Committee of the Australian National University. Relevant permits also were obtained by State Forests of New South Wales, and the New South Wales National Parks and Wildlife Service.
- Biology