Species richness stabilizes productivity via asynchrony and drought-tolerance diversity in a large-scale tree biodiversity experiment

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Authors

  • Florian Schnabel
  • Xiaojuan Liu
  • Matthias Kunz
  • Kathryn Barry
  • Franca J. Bongers
  • Helge Bruelheide
  • Andreas Fichtner
  • Werner Härdtle
  • Shan Li
  • Claas-Thido Pfaff
  • Bernhard Schmid
  • Julia A. Schwarz
  • Zhiyao Tang
  • Bo Yang
  • Jürgen Bauhus
  • Goddert von Oheimb
  • Keping Ma
  • Christian Wirth
Extreme climatic events threaten forests and their climate mitigation potential globally. Understanding the drivers promoting ecosystem stability is therefore considered crucial for mitigating adverse climate change effects on forests. Here, we use structural equation models to explain how tree species richness, asynchronous species dynamics, species-level population stability, and drought-tolerance traits relate to the stability of forest productivity along an experimentally manipulated species richness gradient ranging from 1 to 24 tree species. Tree species richness improved community stability by increasing asynchrony. That is, at higher species richness, interannual variation in productivity among tree species buffered the community against stress-related productivity declines. This effect was positively related to variation in stomatal control and resistance-acquisition strategies among species, but not to the community-weighted means of these trait syndromes. The identified mechanisms by which tree species richness stabilizes forest productivity emphasize the importance of diverse, mixed-species forests to adapt to climate change.
OriginalspracheEnglisch
Aufsatznummereabk1643
ZeitschriftScience Advances
Jahrgang7
Ausgabenummer51
Anzahl der Seiten13
DOIs
PublikationsstatusErschienen - 17.12.2021

Bibliographische Notiz

Funding Information:
This study was funded by the National Key Research and Development Program of China grant 2017YFA0605103; the Strategic Priority Research Program of the Chinese Academy of Sciences grant XDB31000000; Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) grant DFG FOR 891; International Research Training Group TreeDì funded by the DFG (German Research Foundation) grant 319936945/GRK2324 and the University of Chinese Academy of Sciences (F.S.); German Centre for Integrative Biodiversity Research (iDiv) flexible pool initiative grant no. 34600900 (K.E.B.); DFG (German Research Foundation) grant DFG BR 1698/9-2 for trait measurements (H.B.); and URPP Global Change and Biodiversity, University of Zurich (B.S.).

Publisher Copyright:
Copyright © 2021 The Authors, some rights reserved.

Dokumente

DOI