Interaction between the barley allelochemical compounds gramine and hordenine and artificial lipid bilayers mimicking the plant plasma membrane

Research output: Journal contributionsJournal articlesResearchpeer-review

Authors

  • Simon Lebecque
  • Jean Marc Crowet
  • Laurence Lins
  • Benjamin M. Delory
  • Patrick Du Jardin
  • Marie Laure Fauconnier
  • Magali Deleu

Some plants affect the development of neighbouring plants by releasing secondary metabolites into their environment. This phenomenon is known as allelopathy and is a potential tool for weed management within the framework of sustainable agriculture. While many studies have investigated the mode of action of various allelochemicals (molecules emitted by allelopathic plants), little attention has been paid to their initial contact with the plant plasma membrane (PPM). In this paper, this key step is explored for two alkaloids, gramine and hordenine, that are allelochemicals from barley. Using in vitro bioassays, we first showed that gramine has a greater toxicity than hordenine towards a weed commonly found in northern countries (Matricaria recutita L.). Then, isothermal titration calorimetry was used to show that these alkaloids spontaneously interact with lipid bilayers that mimic the PPM. The greater impact of gramine on the thermotropic behaviour of lipids compared to hordenine was established by means of infrared spectroscopy. Finally, the molecular mechanisms of these interactions were explored with molecular dynamics simulations. The good correlation between phytotoxicity and the ability to disturb lipid bilayers is discussed. In this study, biophysical tools were used for the first time to investigate the interactions of allelochemicals with artificial PPM.

Original languageEnglish
Article number9784
JournalScientific Reports
Volume8
Issue number1
Number of pages13
ISSN2045-2322
DOIs
Publication statusPublished - 28.06.2018

Bibliographical note

Funding Information:
We would like to thank the FNRS (PDR grant T.1003.14), the Belgian Program on Interuniversity Attraction Poles initiated by the Federal Office for Scientific, Technical and Cultural Affairs (IAP P7/44 iPros), and the University of Liège (Action de Recherche Concertée-Project FIELD) for financial support. Partial computational resources have been provided by the Consortium des Équipements de Calcul Intensif (CÉCI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11. We thank Pr. Edwin de Pauw for comments on the manuscript. We thank Lucas Vanderavero, Hazar Rouihem, Pierre Delaplace and Imen Bouhaouel for their advice and technical support. SL is funded by the Cellule d’Appui à la Recherche et à l’Enseignement (CARE) AgricultureIsLife (University of Liège). MD and LL are Senior Research Associates for the Fonds National de la Recherche Scientifique (FRS-FNRS).

Publisher Copyright:
© 2018 The Author(s).

    Research areas

  • Ecosystems Research - Computational biophysics, Membrane biophysics, Plant sciences

Documents

DOI