Douglas-fir seedlings exhibit metabolic responses to increased temperature and atmospheric drought

Research output: Journal contributionsJournal articlesResearchpeer-review

Authors

  • Kirstin Jansen
  • Baoguo Du
  • Zachary Kayler
  • Rolf Siegwolf
  • Ingo Ensminger
  • Heinz Rennenberg
  • Bernd Kammerer
  • Carsten Jaeger
  • Marcus Schaub
  • Jürgen Kreuzwieser
  • Arthur Gessler
In the future, periods of strongly increased temperature in concert with drought
(heat waves) will have potentially detrimental effects on trees and forests in Central Europe. Norway spruce might be at risk in the future climate of Central Europe. However, Douglas-fir is often discussed as an alternative for the drought and heat sensitive Norway spruce, because some provenances are considered to be well adapted to drier and warmer conditions. In this study, we identified the physiological and growth responses of seedlings from two different Douglas-fir provenances to increased temperature and atmospheric drought during a period of 92 days. We analysed (i) plant biomass, (ii) carbon stable isotope composition as an indicator for time integrated intrinsic water use efficiency, (iii) apparent respiratory carbon isotope fractionation as well as (iv) the profile of polar low molecular metabolites. Plant biomass was only slightly affected by increased temperatures and atmospheric drought but the more negative apparent respiratory fractionation indicated a temperature-dependent decrease in the commitment of substrate to the tricarboxylic acid cycle. The metabolite profile revealed that the simulated heat wave induced a switch in stress protecting compounds from proline to polyols. We conclude that metabolic acclimation successfully contributes to maintain functioning and physiological activity in seedlings of both Douglas-fir provenances under conditions that are expected during heat waves (i.e. elevated temperatures and atmospheric drought). Douglas-fir might be a potentially important tree species for forestry in Central Europe under changing climatic conditions.
Original languageEnglish
Article numbere114165
JournalPLoS ONE
Volume9
Issue number12
Number of pages21
ISSN1932-6203
DOIs
Publication statusPublished - 01.12.2014
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2014 Jansen et al.