Data-driven and physics-based modelling of process behaviour and deposit geometry for friction surfacing

Research output: Journal contributionsJournal articlesResearch

Standard

Data-driven and physics-based modelling of process behaviour and deposit geometry for friction surfacing. / Bock, Frederic E.; Kallien, Zina; Huber, Norbert et al.
In: Computer Methods in Applied Mechanics and Engineering, Vol. 418, No. Part A, 116453, 01.01.2024.

Research output: Journal contributionsJournal articlesResearch

Harvard

APA

Vancouver

Bibtex

@article{16a6034cb2d24a4cb82f294d8e3ea7b2,
title = "Data-driven and physics-based modelling of process behaviour and deposit geometry for friction surfacing",
abstract = "In the last decades, there has been an increase in the number of successful machine learning models that have served as a key to identifying and using linkages within the process-structure–property-performance chain for vastly different problems in the domains of materials mechanics. The consideration of physical laws in data-driven modelling has recently been shown to enable enhanced prediction performance and generalization while requiring less data than either physics-based or data-driven modelling approaches independently. In this contribution, we introduce a simulation-assisted machine learning framework applied to the solid-state layer deposition technique friction surfacing, suitable for solid-state additive manufacturing as well as repair or coating applications. The objective of the present study is to use machine learning algorithms to predict and analyse the influence of process parameters and environmental variables, i.e. substrate and backing material properties, on process behaviour and deposit geometry. The effects of maximum process temperatures supplied by a numerical heat transfer model on the predictions of the targets are given special attention. Numerous different machine learning algorithms are implemented, optimized and evaluated to take advantage of their varied capabilities and to choose the optimal one for each target and the provided data. Furthermore, the input feature dependence for each prediction target is evaluated using game-theory related Shapley Additive Explanation values. The experimental data set consists of two separate experimental design spaces, one for varying process parameters and the other for varying substrate and backing material properties, which allowed to keep the experimental effort to a minimum. The aim was to also represent the cross parameter space between the two independent spaces in the predictive model, which was accomplished and resulted in an approximately 44 % reduction in the number of experiments when compared to carrying out an experimental design that included both spaces.",
keywords = "Machine learning, Feature selection, Numerical modelling, Heat transfer, Design of experiments, Explainable AI, Engineering",
author = "Bock, {Frederic E.} and Zina Kallien and Norbert Huber and Benjamin Klusemann",
note = "This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 101001567). Publisher Copyright: {\textcopyright} 2023 The Author(s)",
year = "2024",
month = jan,
day = "1",
doi = "10.1016/j.cma.2023.116453",
language = "English",
volume = "418",
journal = "Computer Methods in Applied Mechanics and Engineering",
issn = "0045-7825",
publisher = "Elsevier B.V.",
number = "Part A",

}

RIS

TY - JOUR

T1 - Data-driven and physics-based modelling of process behaviour and deposit geometry for friction surfacing

AU - Bock, Frederic E.

AU - Kallien, Zina

AU - Huber, Norbert

AU - Klusemann, Benjamin

N1 - This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation program (grant agreement No 101001567). Publisher Copyright: © 2023 The Author(s)

PY - 2024/1/1

Y1 - 2024/1/1

N2 - In the last decades, there has been an increase in the number of successful machine learning models that have served as a key to identifying and using linkages within the process-structure–property-performance chain for vastly different problems in the domains of materials mechanics. The consideration of physical laws in data-driven modelling has recently been shown to enable enhanced prediction performance and generalization while requiring less data than either physics-based or data-driven modelling approaches independently. In this contribution, we introduce a simulation-assisted machine learning framework applied to the solid-state layer deposition technique friction surfacing, suitable for solid-state additive manufacturing as well as repair or coating applications. The objective of the present study is to use machine learning algorithms to predict and analyse the influence of process parameters and environmental variables, i.e. substrate and backing material properties, on process behaviour and deposit geometry. The effects of maximum process temperatures supplied by a numerical heat transfer model on the predictions of the targets are given special attention. Numerous different machine learning algorithms are implemented, optimized and evaluated to take advantage of their varied capabilities and to choose the optimal one for each target and the provided data. Furthermore, the input feature dependence for each prediction target is evaluated using game-theory related Shapley Additive Explanation values. The experimental data set consists of two separate experimental design spaces, one for varying process parameters and the other for varying substrate and backing material properties, which allowed to keep the experimental effort to a minimum. The aim was to also represent the cross parameter space between the two independent spaces in the predictive model, which was accomplished and resulted in an approximately 44 % reduction in the number of experiments when compared to carrying out an experimental design that included both spaces.

AB - In the last decades, there has been an increase in the number of successful machine learning models that have served as a key to identifying and using linkages within the process-structure–property-performance chain for vastly different problems in the domains of materials mechanics. The consideration of physical laws in data-driven modelling has recently been shown to enable enhanced prediction performance and generalization while requiring less data than either physics-based or data-driven modelling approaches independently. In this contribution, we introduce a simulation-assisted machine learning framework applied to the solid-state layer deposition technique friction surfacing, suitable for solid-state additive manufacturing as well as repair or coating applications. The objective of the present study is to use machine learning algorithms to predict and analyse the influence of process parameters and environmental variables, i.e. substrate and backing material properties, on process behaviour and deposit geometry. The effects of maximum process temperatures supplied by a numerical heat transfer model on the predictions of the targets are given special attention. Numerous different machine learning algorithms are implemented, optimized and evaluated to take advantage of their varied capabilities and to choose the optimal one for each target and the provided data. Furthermore, the input feature dependence for each prediction target is evaluated using game-theory related Shapley Additive Explanation values. The experimental data set consists of two separate experimental design spaces, one for varying process parameters and the other for varying substrate and backing material properties, which allowed to keep the experimental effort to a minimum. The aim was to also represent the cross parameter space between the two independent spaces in the predictive model, which was accomplished and resulted in an approximately 44 % reduction in the number of experiments when compared to carrying out an experimental design that included both spaces.

KW - Machine learning

KW - Feature selection

KW - Numerical modelling

KW - Heat transfer

KW - Design of experiments

KW - Explainable AI

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85172876453&partnerID=8YFLogxK

U2 - 10.1016/j.cma.2023.116453

DO - 10.1016/j.cma.2023.116453

M3 - Journal articles

VL - 418

JO - Computer Methods in Applied Mechanics and Engineering

JF - Computer Methods in Applied Mechanics and Engineering

SN - 0045-7825

IS - Part A

M1 - 116453

ER -

Recently viewed

Publications

  1. Parameters Estimation of a Lotka-Volterra Model in an Application for Market Graphics Processing Units
  2. Estimation and interpretation of a Heckman selection model with endogenous covariates
  3. Comparison of Bio-Inspired Algorithms in a Case Study for Optimizing Capacitor Bank Allocation in Electrical Power Distribution
  4. Changing the Administration from within:
  5. Positioning Improvement for a Laser Scanning System using cSORPD control
  6. An analytical approach to evaluating nonmonotonic functions of fuzzy numbers
  7. Enhancing implicit change detection through action
  8. Mining positional data streams
  9. Who can receive the pass? A computational model for quantifying availability in soccer
  10. Development of a scoring parameter to characterize data quality of centroids in high-resolution mass spectra
  11. Trait correlation network analysis identifies biomass allocation traits and stem specific length as hub traits in herbaceous perennial plants
  12. Material flow during constrained friction processing and its effects on the local properties of AM50 rods
  13. Applications of the Simultaneous Modular Approach in the Field of Material Flow Analysis
  14. Understanding reading as a form of language-use
  15. HAWK - hybrid question answering using linked data
  16. Identification of conductive fiber parameters with transcutaneous electrical nerve stimulation signal using RLS algorithm
  17. Introducing split orders and optimizing operational policies in robotic mobile fulfillment systems
  18. Dynamic priority based dispatching of AGVs in flexible job shops
  19. Stability analysis of a linear model predictive control and its application in a water recovery process
  20. Supporting discourse in a synchronous learning environment
  21. From Knowledge to Application
  22. What can conservation strategies learn from the ecosystem services approach?
  23. Modeling items for text comprehension assessment using confirmatory factor analysis
  24. Text Comprehension as a Mediator in Solving Mathematical Reality-Based Tasks
  25. How Much Tracking Is Necessary? - The Learning Curve in Bayesian User Journey Analysis
  26. Reality-Based Tasks with Complex-Situations
  27. Self-tuning of a kalman filter applied in a DC drive and in a kalman-based sensor
  28. Wavelet functions for rejecting spurious values
  29. Distinguishing state variability from trait change in longitudinal data
  30. Evaluation of standard ERP software implementation approaches in terms of their capability for business process optimization
  31. A Lyapunov based PI controller with an anti-windup scheme for a purification process of potable water
  32. Identification of sites with elevated PM levels along an urban cycle path using a mobile platform and the analysis of 48 particle bound PAH
  33. Data based analysis of order processing strategies to support the positioning between conflicting economic and logistic objectives
  34. Alternating between Partial and Complete Organization