Analysis of Dynamic Response of a Two Degrees of Freedom (2-DOF) Ball Bearing Nonlinear Model

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

Analysis of Dynamic Response of a Two Degrees of Freedom (2-DOF) Ball Bearing Nonlinear Model. / Ambrożkiewicz, Bartłomiej; Litak, Grzegorz; Georgiadis, Anthimos et al.
In: MDPI Applied Sciences, Vol. 11, No. 2, 787, 15.01.2021.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

APA

Vancouver

Bibtex

@article{12acb70139aa4b6a8997b88e854cf7d4,
title = "Analysis of Dynamic Response of a Two Degrees of Freedom (2-DOF) Ball Bearing Nonlinear Model",
abstract = "Often the input values used in mathematical models for rolling bearings are in a wide range, i.e., very small values of deformation and damping are confronted with big values of stiffness in the governing equations, which leads to miscalculations. This paper presents a two degrees of freedom (2-DOF) dimensionless mathematical model for ball bearings describing a procedure, which helps to scale the problem and reveal the relationships between dimensionless terms and their influence on the system{\textquoteright}s response. The derived mathematical model considers nonlinear features as stiffness, damping, and radial internal clearance referring to the Hertzian contact theory. Further, important features are also taken into account including an external load, the eccentricity of the shaft-bearing system, and shape errors on the raceway investigating variable dynamics of the ball bearing. Analysis of obtained responses with Fast Fourier Transform, phase plots, orbit plots, and recurrences provide a rich source of information about the dynamics of the system and it helped to find the transition between the periodic and chaotic response and how it affects the topology of RPs and recurrence quantificators.",
keywords = "Engineering, ball bearings, nonlinear mathematical model, shape errors, radical internal clearance, diagnostics, recurrence analysis",
author = "Bart{\l}omiej Ambro{\.z}kiewicz and Grzegorz Litak and Anthimos Georgiadis and Nicolas Meier and Alexander Gassner",
note = "The project/research was financed in the framework of the project Lublin University of Technology—Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).",
year = "2021",
month = jan,
day = "15",
doi = "10.3390/app11020787",
language = "English",
volume = "11",
journal = "MDPI Applied Sciences",
issn = "2076-3417",
publisher = "MDPI AG",
number = "2",

}

RIS

TY - JOUR

T1 - Analysis of Dynamic Response of a Two Degrees of Freedom (2-DOF) Ball Bearing Nonlinear Model

AU - Ambrożkiewicz, Bartłomiej

AU - Litak, Grzegorz

AU - Georgiadis, Anthimos

AU - Meier, Nicolas

AU - Gassner, Alexander

N1 - The project/research was financed in the framework of the project Lublin University of Technology—Regional Excellence Initiative, funded by the Polish Ministry of Science and Higher Education (contract no. 030/RID/2018/19).

PY - 2021/1/15

Y1 - 2021/1/15

N2 - Often the input values used in mathematical models for rolling bearings are in a wide range, i.e., very small values of deformation and damping are confronted with big values of stiffness in the governing equations, which leads to miscalculations. This paper presents a two degrees of freedom (2-DOF) dimensionless mathematical model for ball bearings describing a procedure, which helps to scale the problem and reveal the relationships between dimensionless terms and their influence on the system’s response. The derived mathematical model considers nonlinear features as stiffness, damping, and radial internal clearance referring to the Hertzian contact theory. Further, important features are also taken into account including an external load, the eccentricity of the shaft-bearing system, and shape errors on the raceway investigating variable dynamics of the ball bearing. Analysis of obtained responses with Fast Fourier Transform, phase plots, orbit plots, and recurrences provide a rich source of information about the dynamics of the system and it helped to find the transition between the periodic and chaotic response and how it affects the topology of RPs and recurrence quantificators.

AB - Often the input values used in mathematical models for rolling bearings are in a wide range, i.e., very small values of deformation and damping are confronted with big values of stiffness in the governing equations, which leads to miscalculations. This paper presents a two degrees of freedom (2-DOF) dimensionless mathematical model for ball bearings describing a procedure, which helps to scale the problem and reveal the relationships between dimensionless terms and their influence on the system’s response. The derived mathematical model considers nonlinear features as stiffness, damping, and radial internal clearance referring to the Hertzian contact theory. Further, important features are also taken into account including an external load, the eccentricity of the shaft-bearing system, and shape errors on the raceway investigating variable dynamics of the ball bearing. Analysis of obtained responses with Fast Fourier Transform, phase plots, orbit plots, and recurrences provide a rich source of information about the dynamics of the system and it helped to find the transition between the periodic and chaotic response and how it affects the topology of RPs and recurrence quantificators.

KW - Engineering

KW - ball bearings

KW - nonlinear mathematical model

KW - shape errors

KW - radical internal clearance

KW - diagnostics

KW - recurrence analysis

UR - https://www.mendeley.com/catalogue/3ff57e57-8ede-352b-80b8-3eb4bc1e2c84/

U2 - 10.3390/app11020787

DO - 10.3390/app11020787

M3 - Journal articles

VL - 11

JO - MDPI Applied Sciences

JF - MDPI Applied Sciences

SN - 2076-3417

IS - 2

M1 - 787

ER -

Documents

DOI

Recently viewed

Publications

  1. How does nature contribute to human mobility? A conceptual framework and qualitative analysis
  2. SAP exchange infrastructure for developers
  3. Electrical Resistivity of Binary Mg Alloys
  4. Institutional Perspectives on Digital Transformation
  5. Der "fachdidaktische Code" der Lebenswelt- und/oder (?) Situationsorientierung
  6. Pragmatic Competence in EIL
  7. A sliding mode control using an extended Kalman filter as an observer for stimulus-responsive polymer fibres as actuator
  8. Elevated temperature and varied load response of AS41 at bolted joint
  9. Investigations on hot tearing of Mg-Al binary alloys by using a new quantitative method
  10. Degradation of 5-FU by means of advanced (photo)oxidation processes
  11. Does the introduction of the Euro have an effect on subjective hypotheses about the price-quality relationship?
  12. Performance Saga: Interview 03
  13. Working hour arrangements and working hours
  14. Development of a magnesium recycling alloy based on the AM alloy system
  15. Multi-level Governance, Policy Implementation and Participation
  16. Cognitive load and science text comprehension
  17. Multitrophic diversity in a biodiverse forest is highly nonlinear across spatial scales
  18. Minimal conditions of motor inductions of approach-avoidance states
  19. Kunstdidaktik
  20. A hysteresis hybrid extended kalman filter as an observer for sensorless valve control in camless internal combustion engines
  21. Between the Front Lines
  22. Systemanalyse für Softwaresysteme
  23. Aesthetic Practices of the New Right
  24. Log in and breathe out: internet-based recovery training for sleepless employees with work-related strain
  25. Logistische Lageranalyse und Methodenvalidierung
  26. Combined experimental–numerical study on residual stresses induced by a single impact as elementary process of mechanical peening
  27. The causal effects of exports on firm size and labor productivity: first evidence from a matching approach
  28. Valorization of industrial waste and by-product streams via fermentation for the production of chemicals and biopolymers
  29. SemREC-SMART 2022
  30. Kurzprosa
  31. Verbund-Simulation - Strategic Planning and Optimization of Integrated Production Networks