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Abstract: Often the input values used in mathematical models for rolling bearings are in a wide
range, i.e., very small values of deformation and damping are confronted with big values of stiffness
in the governing equations, which leads to miscalculations. This paper presents a two degrees
of freedom (2-DOF) dimensionless mathematical model for ball bearings describing a procedure,
which helps to scale the problem and reveal the relationships between dimensionless terms and their
influence on the system’s response. The derived mathematical model considers nonlinear features as
stiffness, damping, and radial internal clearance referring to the Hertzian contact theory. Further,
important features are also taken into account including an external load, the eccentricity of the
shaft-bearing system, and shape errors on the raceway investigating variable dynamics of the ball
bearing. Analysis of obtained responses with Fast Fourier Transform, phase plots, orbit plots, and
recurrences provide a rich source of information about the dynamics of the system and it helped to
find the transition between the periodic and chaotic response and how it affects the topology of RPs
and recurrence quantificators.

Keywords: ball bearings; nonlinear mathematical model; shape errors; radial internal clearance;
diagnostics; recurrence analysis

1. Introduction

Ball bearings are one of the main components in mechanical systems dealing with
transferring the rotational movement and carrying loads, simultaneously assuring high
reliability of the structure [1,2]. Years of ball bearings’ development brought the high-
precision rolling element bearings in application to a more demanding environment such as
space crafts, high-speed rails, or in machines for the semiconductor industry [3], where the
reduced friction, vibrations, and heat generation is required. Growing needs and demands
require the application of advanced signal processing techniques [4,5] or mathematical
description of dynamical phenomena in ball bearings [6,7].

Rotating rolling element bearing generates vibrations related to the parametrical
excitation called varying compliance (VC) [8] and characteristic frequencies referring to
the specific bearing element [9]. Varying compliance vibrations are related to the number
of carrying load rolling elements resulting in rapidly changing stiffness [10,11]. The VC
characteristic frequency peak independently from the quality of rolling surfaces or faults
and they are related to one of the characteristic ball bearing’s frequencies, i.e., fundamental
train frequency (FTF). Other characteristic frequencies refer to the faults of inner ring
(BPFI—Ball Passage Frequency Inner), outer ring (BPFO—Ball Passage Frequency Outer),
or rolling element (BSF—Ball Spin Frequency) [12,13].
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Many internal and external phenomena affect the dynamics of rotational mechanical
systems and it is the same in the case of ball bearings. Except for varying compliance vibra-
tions and characteristic frequencies corresponding to the bearing’s design, the following
features are the source of nonlinearity in rolling element bearings:

• variable stiffness in time, related to Hertzian contact theory [14,15],
• shape errors and evident faults [16,17],
• friction torque [18],
• radial internal clearance [19],
• subjected external forces [20],
• eccentricity [21],
• thermal expansion influencing the internal geometry [22,23].

In most of the papers related to the mathematical modeling of ball bearings, analyses
of response frequencies or statistics-based approaches were proposed to identify faults,
while the optimal working conditions and factors inducing vibrations are crucial for future
design developments. One of the most important operational parameters is the radial
internal clearance denoting the total distance in the radial direction that the inner ring and
outer ring can be displaced in relation to each other. The selection of the radial clearance
depends on the operating conditions, both too small and too big will result in premature
fatigue and short bearing life [24]. Over the years, the influence of the radial clearance
was the subject of the research and was discussed by the analysis of the mathematical
model and the experiment. Tiwari et al. [25] studied the influence of the radial clearance on
the rotor’s dynamics. His analysis brought the information on appearing super- and sub-
harmonics in the frequency spectra depending on the clearance value. Tomović et al. [26]
found the correlation between the value of radial clearance and the amplitude of vibrations,
which has a linear character. Mitrović et al. provided the source of knowledge on radial
clearance influence on the ball bearing service life [27] and performed an analysis of grease
contamination influence on the RIC by the thermographic inspection [28]. Xu et al. [29]
analyzed the bearing response with RMS indicator by variable internal clearance and load.

Based on the above-cited literature, the bearing clearance is a subject of study over the
years. However, in most of the papers, the case study bearings with defined parameters in
the model are discussed. The alternative is to derive the dimensionless model for a better
understanding of terms applied into the mathematical model on each other and characterize
the ball bearing dynamic response. The significant increase of the radial clearance during
bearing operation is an undesirable phenomenon from the exploitation point of view and it.
On its variability, the following factors can have an influence: fitting on the shaft, the thermal
expansion, subjected loads, shape errors, and the radial run-out. The first three factors are
related to earlier determined operating conditions and they can be more or less predicted. The
shape errors in form of roundness or waviness of the rolling surface can be observed in form
of numerous and small amplitude frequency peaks. This effect is only measurable during the
ball bearing’s assembly process or its disassembly. Another factor is the eccentricity related to
the shaft’s manufacturing imperfections, external loads on the rotating shaft, or its improper
connection with the motor by the clutch. In our research, we will present the effect of variable
eccentricity on the dynamic response of the rolling element bearing.

As the eccentricity introduces additional excitation into the system nonlinearities,
such as contact loss in multi-body interactions present in the system play a more important
role. Consequently, we expect the appearance of evolution and bifurcations of periodic
solutions with the change of the eccentricity. Finally, various instabilities [30] occur in
the system. In the specific conditions, chaotic motion [31] can develop, those effects can
be studied by different methods [32], such as the Maximal Lyapunov Exponents, Test
0–1 [33] or Multi-Scale Entropy [34]. One of the promising methods to analyze the chaotic
response of ball bearings is the recurrence analysis [35,36]. According to Henri Poincaré’s
work, the dynamic system comes back to the initial state or its close neighborhood in
the phase space after some characteristic time forming so-called Poincaré sections [37].
Eckmann et al. [38] proposed the tool for visualization of the small parts of time series in
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the form of a recurrence plot (RP), however, to obtain the quantitative information on the
considered state, the Recurrence Quantification Analysis has to be conducted [39]. The
mentioned method has been already applied to characterize nonlinear dynamics in the
variable dynamics of the mechanical systems [40–44] and manufacturing processes [45,46].
The advantage of the recurrence analysis is that it detects the natural behavior of mechanical
systems, i.e., occurrence of the same state after some time. That is why, with help of
recurrences, it is possible to recognize defects, rapidly changing vibrations as chatters in
milling, or varying misalignments or clearance in time. Ball bearings and other rotational
systems generate rapidly changing vibrations in time and minor quantitative or qualitative
changes in the dynamical response can be studied in short-time intervals. In this paper, it
is used for the analysis of ball bearing’s nonlinear dynamics.

The rest of the paper is arranged in the following way. In Section 2, the derived
dimensionless mathematical model of rolling-element bearing with its assumptions is
discussed. Next, simulation results are presented for different values of eccentricity through
FFT, phase plots, and orbit diagrams. In Section 4, the brief theory on the recurrence
analysis is presented, and obtained recurrence plots and recurrence quantificators are
discussed. Section 5 contains the discussion on results obtained and the next challenges in
the mathematical model are mentioned. The last section summarizes the paper.

2. Mathematical Model of the Rolling Element Bearing
2.1. Description of the 2-DOF Mathematical Model of the Rolling Element Bearing

In Figure 1, the ball bearing is presented as the nonlinear spring-damper oscillator
with the rotating shaft-inner ring system driven by a constant angular velocity ωs and
rigid outer ring. The 2-degrees of freedom (DOF) mathematical model of rolling-element
bearing represents the basic operation of the deep groove ball bearings (DGBB) in the x–y
plane. In the model, the inner ring and the shaft are treated as one rotating mass and the
outer ring is fixed in the housing. The derived mathematical model takes into account
external loads that are subjected to the outer ring, the eccentricity of the shaft caused by
improper shaft’s coupling or seating, shape errors on the rolling surfaces of the inner and
outer ring, variable deformations related to Hertzian contact theory, while the gyroscopic
effect is neglected.

In the model, interactions related to the friction torque are neglected, so there are no
fluctuations in the angular velocity. The deformation of each rolling element-raceway is taken
into account in form of a nonlinear spring. In the DGBB, rolling elements are distributed
equally around its circumference with the constant angle ψi, so the angular position of i-th
rolling element is calculated from the vertical axis according to the following formula:

ψi = ψ0 +
∫ t

o
ωc(t)dt, (1)

ψ0 =
2π(i− 1)

n
, (2)

where, ψ0 is the angular position of the first ball, i is the angular position of the ball (i = 0,
1, . . . , n − 1), n is the number of rolling elements, ωc is the rotational velocity of the cage.

The value of the rotational velocity of the cage ωc is determined by the internal geometry
of the ball bearing and subjected velocity of the shaft. It is worth emphasizing, that the velocity
of the cage is the same as the velocity of each rolling element assuming no slippage.

ωc =
ωs

2

(
1− D

dp

)
, (3)

where, D is the ball diameter, dp is the pitch diameter.
The dimensionless model gives sensitive information on the influence of applied terms

on each other [47,48], then the system is scaled and provides the information on the existing
dependencies between dimensionless terms and their impact on the system’s dynamics. In
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the simulation of the derived model, as the global variable, the value of the radial internal
clearance is assumed. The mentioned term was taken intentionally, as it has a significant
impact on the dynamic response and is related to the variable contact in a ball bearing. In the
practical application, the RIC strongly affects the tribology features of ball bearings. In the
following subsections, applied nonlinear effects in the mathematical model are discussed.
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Figure 1. 2-degrees of freedom (DOF) mathematical model of the rolling element bearing. The inner
ring with the shaft is treated as one rotating mass of the bearing.

2.2. Nonlinear Effect—Eccentricity of the Shaft-Inner Ring System

One of the factors affecting the dynamic response of the ball bearing is the eccentricity
of the rotor, on which the bearing is seated [49,50]. In rotor-based systems, it is impossible
to avoid the shaft’s eccentricity due to its improper manufacturing (mass distribution)
or improper coupling with the propelling motor. In the real conditions, the acceptable
eccentricity level is equal to (1–6) µm and affects the variable contact in the ball bearing. In
Figure 2, the effect of eccentricity acting on the rotor system is presented. The gravitational
acceleration (mir + ms)g additionally intensifies the effect of the eccentricity on the system’s
dynamics. Centrifugal force Fs of the rotor-bearing system refers to the shifted center of
gravity by eccentricity, gravitational acceleration, and deformations in the x–y plane.
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2.3. Nonlinear Effect—Shape Errors on Rolling Surfaces

As a result of the grinding process, the shape errors (waviness) occur on the rolling
surfaces of ball bearings in form of smaller and bigger undulations over the bearing’s
circumference. By the fact of rolling over the manufacturing imperfections, additional
frequency peaks are induced in a wide range of operational frequencies. The amplitude of
frequencies related to the waviness depends on the number of undulations and the value
of waves [20,51]. In Figure 3, the graphics showing the visual waviness profile applied
in the mathematical model taking into account imperfections on the inner and outer ring.
The waviness of balls is omitted as they characterize by smaller values of undulations, the
fact is related to the bigger hardness of balls than rings and a longer and more precise
manufacturing process (super-finish). Despite the fact that values of respective waves are
much smaller than the value of clearance, they should be taken into account during the
calculation of nonlinear contact in bearings. As a result of the long-term bearing operation,
the depth of each wave propagates and leads to damage. The mathematical description of
the raceway waviness for the inner and outer ring is the following:

(Uinner)i = Uinner sin(Ninnerψ0), (4)

(Uouter)i = Uouter sin(Nouterψ0), (5)

where Uinner is the amplitude of the inner raceway surface waviness, Ninner is the number
of undulations on the inner raceway, Uouter is the amplitude of the outer raceway surface
waviness, Nouter is the number of undulations on the outer raceway.
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2.4. Nonlinear Effect—Hertzian Contact Theory

Interactions between rolling surfaces in ball bearings are described with the Hertz
contact law and its effect has a significant impact on the dynamic response. The shape of
the contact in ball bearings depends on the subjected load at most, but the above-mentioned
features influence the contact in lesser impact. We can define the elliptical contact in the
loaded zone and the point contact in the unloaded zone. Arisen varying deformations result
in the nonlinear output of ball bearings and the stronger contact is, the more nonlinear
effect is obtained. In the mathematical models of rolling element bearings, the defects of
specific elements are also introduced by the variable contact [52,53].

In the derived mathematical model, the elastic contact deformation δi is calculated for
each i-th rolling element corresponding to its angular position ψi. In the derived equation
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(Equation (6)), the effect of radial internal clearance and waviness on rolling surfaces are
taken into account:

δi = δxs cos(ψi) + δys sin(ψi)− rc −Uinner sin(Ninnerψ0)−Uouter sin(Nouterψ0), (6)

where δxs, δys are relative displacement between inner and outer rings in the x- and y-
directions, respectively. For the δi < 0, there is no contact between rolling surfaces.

Considering the 2-DOF mathematical model, Hertzian contact force [54,55] acts in
horizontal (Fy) and vertical (Fx) direction and can be expressed in the following way:

Kx = kb

n

∑
i=1

H(δi)δ
γ−1
i cos(ψi), (7)

Ky = kb

n

∑
i=1

H(δi)δ
γ−1
i sin(ψi), (8)

where, kb is the rolling element stiffness, γ is the contact coefficient (point contact in ball
bearings γ = 3/2, linear contact in roller bearing γ = 10/9) [56], while H(·) denotes the
Heaviside function.

The value of Heaviside, H(·), depends on the contact between rolling surfaces and is
formulated as follows: {

0 f or x < 0− no contact
1 f or x ≥ 0− in contact

, (9)

2.5. Equations of Motion

In the derived mathematical model, the external forces can be subjected in two direc-
tions of the x–y plane. Taking into account proposed nonlinear features, the final solution
of the mathematical model consists of the following set of differential equations (Equa-
tion (10)). The governing equations are obtained by the transformation of the Lagrange
equation of 2nd kind taking into consideration the mass of bearing-rotor system equal
to 1 for the dimensionless model and they have the following form by defining the state
vector [21]: 

dδxs
dt

dδys
dt

d
.
δxs
dt

d
.
δys
dt

 =



.
δxs.
δys

Fx + ecc ω2
s cos(ωst)− Kxxs − cx

.
δxs

Fy + ecc ω2
s cos(ωst)− Kyys − cy

.
δys

, (10)

where (˙) denotes time derivative with respect to the dimensionless time, t, such as t = τΩ
(τ is the original time in seconds), Ω is the characteristic frequency scaling the natural
frequency related to the linearized continuous contact forces, K′x and K′y: rc

γ−1.k′b/m
= rc

γ−1k′b/m = Ω2. Consequently, ωs = ω′s/Ω. Furthermore, the characteristic lengths
and displacements are scaled by the radial clearance rc as the rotor eccentricity ecc =
ecc′/rc and corresponding shaft displacements δxs = δ′xs/rc, δys = δ′ys/rc together with their
corresponding time derivatives. Dimensionless load force components are Fx—external
force subjected in the vertical direction, Fy—external force subjected in the horizontal
direction (Fx,y = F′x,y/(m rc Ω2)). While dimensionless damping force components—(cx,y
.
δxs,ys) with dimensionless damping coefficients cx,y = c′x,y/Ω.

3. Simulation Results

The derived mathematical model (Equation (10)) is applied in the dimensionless form
with Matlab software using ODE 45 (Runge–Kutta method) solver with a relative tolerance
of 0.01 and the same value of time step. Dimensionless terms related to the Hertzian contact
model are dependent on the global value of the radial internal clearance and the value of
the shaft’s eccentricity is taken as the variable parameter. The value of waviness on the
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rolling surfaces has a weaker impact on the dynamic response and in the real conditions,
it can be determined before bearing’s assembly or disassembly process. In Table 1, the
values of input parameters (with prime) into the model are specified. To determine the
velocity of the cage, the internal geometry (pitch diameter, ball diameter, and the number of
balls) is assumed as for the single-row ball bearing 6309. In Table 2, the potential physical
parameters are specified corresponding to the dimensionless terms. The system is studied
by the internal resonance frequency corresponding the shaft’s angular velocity [57,58]. The
dynamic output of the analyzed bearing is taken during its stable operation, i.e., after the
starting procedure. It is worth emphasizing, that the load is subjected only to the x-axis
(vertical direction) introducing a significant nonlinear effect into the response. The results
of the time series, Fast Fourier Transform, phase plots are presented and discussed only
from the mentioned direction. In the orbit plots, the results obtained from both axes are
taken into account.

Table 1. Parameters of the rolling element bearing taken for simulation in the dimensionless model, all the lengths are
expressed in the clearance value.

Parameter Symbol Value

Angular velocity of the shaft ωs
′ 1.000

Radial internal clearance rc
′ 1.000

Number of rolling elements N 13
Rotor’s eccentricity ecc′ 0.05; 0.1; 0.2; 0.3; 0.35; 0.4

The amplitude of inner raceway surface waviness Uinner
′ 0.020

Number of waviness undulations per inner raceway circumference Ninner 28
The amplitude of outer raceway surface waviness Uouter

′ 0.016
Number of waviness undulations per outer raceway circumference Nouter 28

Ball stiffness kb
′ 1.000

Damping coefficient in x-axis cx
′ 0.010

Damping coefficient in y-axis cy
′ 0.010

External force subjected in the x-axis Fx
′ 1.200

External force subjected in the y-axis Fy
′ 0.000

Table 2. Physical parameters corresponding the dimensionless terms.

Parameter Symbol Value

Angular velocity of the shaft ωs 37.65 [Hz]
Ball diameter D 15.875 [mm]

Pitch diameter dp 71.810 [mm]
Radial internal clearance rc 20.0 [µm]

Rotor’s eccentricity ecc 1; 2; 4; 6; 7; 8 [µm]
The amplitude of inner raceway surface waviness Uinner 0.4 [µm]
The amplitude of outer raceway surface waviness Uouter 0.32 [µm]

Mass of the bearing-rotor system m 6 [kg]
Ball stiffness kb 189000 [N/m]

Damping coefficient in x-axis cx 265.6 [Ns/m]
Damping coefficient in y-axis cy 265.6 [Ns/m]

External force subjected in the x-axis Fx 7.05 [kg]
External force subjected in the y-axis Fy 0.0 [kg]

3.1. Time Series of Deformation and Fast Fourier Transform (FFT)

The bearing-rotor SYSTEM’S dynamic response is examined by the different values of
eccentricity as specified in Table 1. The level of the eccentricity is a very common problem in
rotational mechanical systems and its too big value, strongly affects the correct operation of
the system. In the considered dimensionless model, the value of eccentricity is dependent
on the constant clearance value. In Figure 4, the time series of deformation in the x-axis and
obtained FFT spectra are presented. In the analyzed model, the ball bearing is radially loaded
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only in one direction (x-axis) and there is no subjected load in the y-axis, so it is expected to
obtain a periodic solution by all considered cases in unloaded direction. As the eccentricity
level increases, the response with higher amplitudes is obtained and with stronger nonlinear
effects (Figure 4). The effect of stronger nonlinearity in response is observed at FFT spectra,
the magnitude of the main harmonic in 1 and its super-harmonics are increasing with the
value of eccentricity value up to ecc = 0.35. The main harmonic is marked with the red dashed
line in Figure 4 and it corresponds to the frequency of the shaft. Moreover, the increasing
value of the eccentricity shows the impact of the waviness on the response by appearing of
numerous and small amplitude frequency peaks at FFT spectra.
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The increase of eccentricity is affecting the system response with main and higher
superharmonics. In the limit of small ecc, we observe the domination of the second
harmonic corresponding to parametric excitation with the shaft rotational velocity, ωs. For
medium ecc, the peak corresponding to ωs is developing and dominates (see the case with
ecc = 0.3). Such interplay of superharmonics in the change of system parameters is common
in nonlinear systems. In our case, the parametric excitation is associated with Hertzian
stiffness. Note, that in the above-discussed cases with ecc up to 0.3, the δxs is positive
which signals that there is no contact loss. Interestingly, for a higher value of eccentricity
(see vales ecc = 0.35 and 0.40 in the bottom of Figure 4), we observe the formation of the
continuous spectrum of the system response, which could correspond to chaotic behavior.
This phenomenon is also typical for nonlinear systems with higher amplitude of excitation,
which is controlled by the eccentricity in our system. In these two cases, non-periodic
responses are induced additionally by the contact loss which is visible in Figure 4 (see in the
left panels for the cases with ecc = 0.35 and 0.40) by the negative values of δxs. Additional
frequency peak (frequency at 1.2) in the last two cases could correspond to the variable
stiffness with contact loss.

3.2. Orbit Plots and Phase Portraits

For better clarity, for the same values of rotor’s eccentricity, the orbit plots and corre-
sponding δxs-phase plots (Figure 5) are presented to identify and describe the dynamical
behavior of the system. As the force is subjected to the x-axis, significant changes are
expected in only that direction. Obtained orbit plots for the eccentricity ecc = {0.05; 0.1; 0.2;
0.3} are closed denoting the periodic motion of the bearing. Visible widening of the orbits
is presumably related to the additional waviness of the raceway surface.

As the eccentricity is increasing, the deformation in the x-axis is widening creating
the moon-shape orbit. The chaotic motion is observed for the eccentricity ecc = {0.35; 0.4},
then the obtained orbit plot has opened structure and the trajectory is not repeatable.
Additionally, the temporary contact loss is observed as the 0 value is crossed. The impact
of the eccentricity on the dynamical response is also observed at phase plots (Figure 5,
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right panel), for the periodic solutions the shifting is observed in the x-direction denoting a
stronger influence of the nonlinearities. The chaotic solutions have non-regular unstable
orbits in his structure as the very similar and close distance trajectories are observed [59].
The application of the basic tools for the diagnostics of dynamical systems allowed us to
find the transition between the periodic to chaotic motion. To obtain extended information
on the dynamic response of the ball bearing, the advanced nonlinear dynamics methods
are applied.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 24 
 

then the obtained orbit plot has opened structure and the trajectory is not repeatable. Ad-
ditionally, the temporary contact loss is observed as the 0 value is crossed. The impact of 
the eccentricity on the dynamical response is also observed at phase plots (Figure 5, right 
panel), for the periodic solutions the shifting is observed in the x-direction denoting a 
stronger influence of the nonlinearities. The chaotic solutions have non-regular unstable 
orbits in his structure as the very similar and close distance trajectories are observed [59]. 
The application of the basic tools for the diagnostics of dynamical systems allowed us to 
find the transition between the periodic to chaotic motion. To obtain extended information 
on the dynamic response of the ball bearing, the advanced nonlinear dynamics methods 
are applied. 

  

  

  

Figure 5. Cont.



Appl. Sci. 2021, 11, 787 11 of 23Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 24 
 

  

  

  
Figure 5. Orbit plots (left) and phase plots (right) by the different values of the rotor’s eccentricity. Note the contact loss 
events (δxs crosses negative values for ecc = 0.35 and 0.4). 

4. Recurrence Analysis 
One of the nonlinear dynamics tools, which can be applied for the analysis of ball 

bearing dynamic response is the recurrence analysis providing the information on all the 
times when the phase space trajectory of the dynamical system visits roughly the same 
area in the phase space [60,61]. Then the two points, which are in close distance to each 
other, are treated as the recurrence points. The distance matrix R (Equation (11)) is for the 
dynamic state x created with ones (recurrence points) and zeros (no recurrence point) at 
the times i and j. ܴ,ఌ = ߝ൫ܪ − ฮሼݔሽ − ൛ݔൟฮ൯, ݅, ݆ = 1, … ,ܰ,  (11)

where N is the number of considered states, H is the Heaviside function, ε is the threshold 
distance, ฮሼݔሽ − ൛ݔൟฮ is the norm of the dynamic states (for the analysis, the constant 
recurrence point density norm at recurrence plot was applied RR = 5%). 

The recurrence analysis is very popular and widely applied among a variety of sci-
ences such as physiology [62,63], geology [64,65], finances [66,67]. The subject of study is 

Figure 5. Orbit plots (left) and phase plots (right) by the different values of the rotor’s eccentricity. Note the contact loss
events (δxs crosses negative values for ecc = 0.35 and 0.4).

4. Recurrence Analysis

One of the nonlinear dynamics tools, which can be applied for the analysis of ball
bearing dynamic response is the recurrence analysis providing the information on all the
times when the phase space trajectory of the dynamical system visits roughly the same
area in the phase space [60,61]. Then the two points, which are in close distance to each
other, are treated as the recurrence points. The distance matrix R (Equation (11)) is for the
dynamic state x created with ones (recurrence points) and zeros (no recurrence point) at
the times i and j.

Rε
i,j = H

(
ε− ‖{xi} −

{
xj
}
‖
)
, i, j = 1, . . . , N, (11)

where N is the number of considered states, H is the Heaviside function, ε is the threshold
distance, ‖{xi} −

{
xj
}
‖ is the norm of the dynamic states (for the analysis, the constant

recurrence point density norm at recurrence plot was applied RR = 5%).
The recurrence analysis is very popular and widely applied among a variety of sciences

such as physiology [62,63], geology [64,65], finances [66,67]. The subject of study is also the
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diagnostics of the mechanical systems [68–70] and recurrences are an alternative method
to the standard frequency and time-based methods. In the following subsections, the
fundamentals of the recurrence-based methods are presented, i.e., recurrence plots (RP)
and Recurrence Quantification Analysis (RQA). The mentioned methods are performed in
Matlab software with CRP Toolbox [71].

4.1. Recurrence Plots (RPs) Method

The forerunners of the graphical interpretation of the considered distance matrix [R]
are Eckmann et al. [38] and Webber et al. [39], who proposed its analysis in the form of
recurrence plots. The mathematical relationship (Equation (12)) describes the formation of
the distance matrix with recurrence points and empty spaces (lack of recurrence):

[
Ri,j
]
=

{
1 : {xi} ≈

{
xj
}

0 : {xi} 6=
{

xj
} , i, j, . . . , N, (12)

where {xi} ≈
{

xj
}

are the points in the close distance appointed by the threshold radius
of ε creating a recurrence point.

Before the recurrence plots can be created, the three parameters must be found be-
forehand, i.e., time delay—τ, embedding dimension—m, and threshold—ε. According
to Takens theorem [72], three mentioned parameters are demanded creating the missing
coordinates, then the state of the system after reconstruction can be represented in form of
a time-delayed vector [32]:

→
x i

=
[

xi, xi−τ , xi−2τ , . . . , xi−(m−1)τ

]
, (13)

The first parameter to be found for the phase space reconstruction is the time delay τ
for which two methods are specified (a) autocorrelation function and (b) mutual informa-
tion. The first method is the autocorrelation function [73] given by the following formula:

cτ =
snsn−τ

σ2 , (14)

where, n is the time index of the dynamical process, τ is the time delay, σ2 is the variance
of the considered time series. Here the characteristic τ is found to be a decay of cτ reaching
0 or the first minimum.

Another approach for the definition of the time lag is the mutual information function
(MI) [74,75]. The method is based on the quantification between the original time series
and delayed time series (shifted), the value of time lag τ for the phase space reconstruction
is the first minimum. In Figure 6a, the exemplary mutual information function is presented
(ecc = 0.4) with the marked first minimum (red-dashed line). The mathematical description
of MI has the following form:

I(x(t), x(t + τ)) = ∑
i,j

pi,j(τ) log (
pi,j(τ)

pi pj
), (15)

where I(x(t),x(t + τ)) is the mutual information function between the original signal and de-
layed time series, pi, pj are the probability that x(t) is in bin i, j of the histogram constructed
from the data points in x, pij(τ) is the probability that x(t) is in bin i and x(t + τ) is in bin j.

The most popular method of determining the embedding dimension m was proposed
by Kennel et al. [76] based on the “False Nearest Neighbors” function. The FNN function
detects points in a close distance to each other in the embedding space. The number of
embedding dimension m is determined by zero of the FNN function (Figure 6b), then all
false neighbors disappear and no further increase of the dimension is necessary [77].

The most demanding step in the phase-space reconstruction is the choice of the
threshold ε corresponding to the radius in the phase space. Marwan in his work [35,78]
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collected a rich source of knowledge on the criteria for its selection, however, the applied
method is mostly dependent on the analyzed dynamical system. For our analysis, we
assume for the calculation, the method of fixed recurrence rate of 5%. Then the threshold
value is adjusted to the density of the recurrence points at RP for all considered cases. This
method has two following advantages:

(1) Considered dynamical states are dependent on only one feature at a constant level.
(2) There is no need to normalize considered time series before the phase-space recon-

struction.
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Figure 6. The mutual information (MI) (a) denotes the time delay (τ) of the phase-space trajectory by
the first minimum (red-dashed line). The first minimum of the False Nearest Neighbors (FNN) (b)
denotes the dimension (m) in the phase space.

For analysis of each case, the short time series consisting of 1500 data points was
taken for analysis, as the dynamic response is based on the mathematical model and the
general character of the deformations is repeatable after the staring procedure. In Table 3,
the parameters for the phase space reconstruction are collected, values of a calculated time
delay with MI function are on a relatively high level denoting the nonlinear character of
the response obtained. The calculated threshold ε is rather on a constant level for 4 cases,
taking into account the constant value of the recurrence rate.

Table 3. The parameters for the reconstruction of recurrence plots (RPs) by the constant value of
recurrence rate, RR = 0.05.

Eccentricity 0.05 0.1 0.2 0.3 0.35 0.4

Time delay (τ) 14 11 14 11 15 17
Dimension (m) 11 12 11 3 3 4
Threshold (ε) 0.62 0.59 0.60 0.43 0.42 0.59

By observation of the recurrence plots (Figure 7), it is possible to distinguish periodic
and chaotic motion of the ball bearing for specific eccentricity. For small values of the
eccentricity, the periodic character of response is observed, confirming the course of the
deformation time series (Figure 5a–c). For the eccentricity ecc = 0.3, the periodic character of
the response is vanishing, it is evidenced by broken diagonal lines, observance of additional
very-short diagonal lines in the perpendicular direction, and single isolated points. The last
two cases have a strongly non-regular character with numerous empty zones (indicating
losses of correlations) and black regions informing about responses trapped to characteristic
states in the corresponding phase space. In those cases, the distances between lines are
modulated in unexpected ways informing about multiple unstable orbits that form the
chaotic attractor. The square-like structures confirm the presence of intermittences are
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observed [79,80]. For the last three cases, the stronger influence of vertical structures is
visible in contrast to the periodic solutions.
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4.2. Recurrence Quantification Analysis (RQA)

As the recurrence plots (RPs) method provides only qualitative information on the
system’s dynamics, the quantitative method Recurrence Quantification Analysis (RQA)
was proposed in form of recurrence quantificators [81,82]. All the measures are based on
the obtain topology of the recurrence plots giving a statistical description of the dynamic
output. In this paper, the quantificators determined in the CRP Toolbox [71] are employed
and they can be divided by their topology (length and character of diagonal or vertical
lines). The recurrence rate is the only quantificator based on the recurrence density.

• Recurrence rate (RR)—informs about the percentage of recurrence points at RPs, for
the analysis, the constant RR value was assumed in 5%:
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RR =
1

N2

N

∑
i,j=1

Rε
ij, (16)

4.2.1. Quantificators Based on the Diagonal Lines

• Determinism (DET)—refers to the percentage of recurrence points producing diagonal
lines at the recurrence plot of minimal length µ:

DET(µ) =
∑N

l=µ lP(l)

∑N
l=1 lP(l)

, (17)

• Average diagonal line length (L)—denotes that a part of the phase-space trajectory is
in the close distance during l time steps to another part of the phase-space trajectory
in a different time. The L refers to the mean prediction time:

L =
∑N

l=µ lP(l)

∑N
l=µ P(l)

, (18)

• Length of the longest diagonal line (Lmax)—in contrast to the average diagonal measure,
it refers to the length of the longest diagonal (excluding the main diagonal):

Lmax = max({li}, i ∈ (1; Nl)), (19)

• Entropy (ENTR)—is the measure of the distribution of the diagonal segments, it
reflects the complexity of the recurrence plot regarding the diagonal lines:

ENTR = −
N

∑
l=lmin

p(l) ln(p(l)), (20)

4.2.2. Quantificators Based on the Vertical Lines

• Laminarity (LAM)—refers to the percentage of recurrence points producing vertical
lines at the recurrence plot of minimal length µ:

LAM(µ) =
∑N

v=µ vP(v)

∑N
v=1 vP(v)

, (21)

• Trapping time (TT)—denotes the average length of the vertical structures at recur-
rence plot:

TT =
∑N

v=vmin
vP(v)

∑N
v=vmin

P(v)
, (22)

• Length of the longest vertical line (Vmax)—in contrast to the trapping time, this measure
refers to the length of the longest vertical:

Vmax = max({vl}, l ∈ (1; Nv)), (23)

4.2.3. Quantificators Based on the Recurrence Time

• Recurrence time of the 1st type (T(1))—detects weak transitions in signal dynamics,
this quantificator is more robust to the noise level and less sensitive to the parameter
change of the algorithm [83]:

T(1) =
∣∣{i, j : xixj

}
∈ Ri

∣∣, (24)
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• Recurrence time of the 2nd type (T(2))—detects transient states in the signal with very
low energy [83]:

T(2) =
∣∣∣{i, j :

→
x i,
→
x j

}
∈ Ri;

→
x j /∈ Ri

∣∣∣, (25)

where Ri are the remaining recurrence points referring to the time vector
→
x i.

4.2.4. Quantificators Based on the Probability

• Recurrence period density entropy (Trec)—quantifies the extent of recurrences [84,85]:

Trec = −
Tmax

∑
i=1

P(i)lnP(i), (26)

• Clustering coefficient (C)—represents the probability that two recurrences of any state
are also neighbors [36,86]:

C =
∑N

i,j=1 Av,i Ai,j Aj,v

kv(kv − 1)
, (27)

• Transitivity (TRANS)—is the measure allowing to differentiate the periodic or chaotic
dynamics [85]:

T =
∑N

i,j,k=1 Rj,kRi,jRi,k

∑N
i,j,k=1 Ri,jRi,k

(
1− δj,k

) , (28)

The bearing’s dynamic response was analyzed with the above-described quantificators,
to estimate which of them are sensitive to the variable eccentricity parameter. The results
are visualized for the eccentricity ecc = {0; 0.4} with the variable step of 0.05 in Figure 8.
The fixed recurrence rate was employed for the calculation of each quantificator to obtain
consistent results.
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The determinism refers to the system’s predictability and its results are convergent
with the character of obtained recurrence plots. DET is relatively high (close to 1) for
all values of the eccentricity and it slightly decreases with larger eccentricity, then the
nonlinear effects influence at most the system’s dynamics.
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The average length of the diagonal line gives similar information on the system’s
dynamics as the determinism and their trends are very up-close to each other. However,
L indicates the stability of periodic intervals reflected in the recurrence plots in a more
veritable way, especially it decreases for the high values of the eccentricity when the chaotic
dynamics is present from the ecc = 0.25.

Interestingly, the quantificator length of the longest diagonal Lmax has reversed charac-
ter to the length of the average diagonal L. The divergence of the Lmax values corresponds
to the broadening effect of the central diagonal line (see Figure 7). In such a case, L should
be more considered as a more reliable indicator of periodic behavior deficiencies.

Entropy provides information on the uncertainty of the bearing’s response. Clearly,
the value of entropy is increasing with the increase of the eccentricity. For the periodic
solutions, its value is at a constant level.

In the case of the laminarity, it refers to the meantime, when the state of the system is
trapped in some states. It also indicates switching between different states of the system.
Note, that the laminarity value is close to one in a wide range of eccentricity. As the
analyzed mathematical model is deterministic, the transient states can appear only in
chaotic response. Consequently, the vertical lines are fairly short, which is also reflected by
a small value of the TT parameter.

Trapping time refers to the average length of the vertical lines by the measurement
time scale of small changes in the response. The change of TT is convergent with changes
observed at recurrence plots, its increasing trend corresponds to the level of the chaotic
response of the bearing.

The Vmax has a very similar character to the TT, square-like structures form longer
and longer vertical lines with increasing eccentricity. This quantificator strongly reflects
obtained structures of RPs.

Recurrence time is mostly used for stochastic signals with numerous transient states,
so those measures are not practical for considering the mathematical model. Nevertheless,
the recurrence time of the 1st type is very similar to the average length of the diagonal
line quantificator L. The recurrence time of the 2nd type has a very similar course to the
trapping time, so the vertical line based quantificator.

The Trec has a similar course to the Shannon entropy, this quantificator estimates the
average uncertainty of the signal. As for the perfectly periodic signal, the Trec is equal to 0,
the periodic and chaotic solutions of the bearing’s response are distinguished.

In the case of clustering coefficient (C) and transitivity (TRANS), they have a similar
course with minor variability. The constant decrease can be observed from the value of
ecc = 0.1, giving information on the increasing influences of nonlinearities on the bearing’s
dynamics.

Based on the results presented in Figure 5, we observe that many of the quantificators
(including DET, LAM, LMAX, and T(1)) are not very sensitive to the change of the eccentricity.
However, the rest of them (including L, ENTR, TT, VMAX, T(2), Trec, C, and TRANS) are
changing in some intervals. They could be useful to characterize the system response and
consequently to assess the working conditions of the ball bearings.

5. Supplementary Analysis—Kurtosis

One of the statistical quantificators providing the information on the distribution of the
results is the kurtosis. With the mentioned parameter, the results obtained of the variable
deformation are recalculated for the variable eccentricity output (Figure 9). As the dynamic
response has a sinusoidal character, the value of kurtosis for sine and cosine function is
close to 1.5 [87]. As the influence of the nonlinear effects increases with the eccentricity, the
value of kurtosis is getting bigger within. Kurtosis is increasing linearly till the ecc = 0.25,
what is the effect of increasing nonlinearities introduced into the system. The moment
when the bearing is getting into the chaotic motion is for the ecc = 0.35, when the value
of kurtosis is twice higher than for pure periodic function. When the value kurtosis = 3
or higher, it is the information about the intermittences in the analyzed system [88]. The
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general character of the kurtosis is similar to the course of recurrence quantificators based
on the vertical lines.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 20 of 24 
 

5. Supplementary Analysis—Kurtosis 
One of the statistical quantificators providing the information on the distribution of 

the results is the kurtosis. With the mentioned parameter, the results obtained of the var-
iable deformation are recalculated for the variable eccentricity output (Figure 9). As the 
dynamic response has a sinusoidal character, the value of kurtosis for sine and cosine 
function is close to 1.5 [87]. As the influence of the nonlinear effects increases with the 
eccentricity, the value of kurtosis is getting bigger within. Kurtosis is increasing linearly 
till the ecc = 0.25, what is the effect of increasing nonlinearities introduced into the system. 
The moment when the bearing is getting into the chaotic motion is for the ecc = 0.35, when 
the value of kurtosis is twice higher than for pure periodic function. When the value kur-
tosis = 3 or higher, it is the information about the intermittences in the analyzed system 
[88]. The general character of the kurtosis is similar to the course of recurrence quantifica-
tors based on the vertical lines. 

 
Figure 9. Kurtosis is calculated for the different values of the rotor’s eccentricity. 

6. Results Discussion and Summary 
This article reports the results obtained in the analysis of the dimensionless mathe-

matical model for the single-row ball bearing by the recurrence-based methods. For the 
variable parameter, which is changing the bearing’s dynamics, the shape error in form of 
the eccentricity was used. The model was studied in a wide range of the operating param-
eter showing the transition between the periodic and chaotic motion of the system. For 
studying the behavior of the bearing-shaft system dynamic, the recurrence-based meth-
ods were applied in the form of recurrence plots (RPs) and the Recurrence Quantification 
Analysis (RQA). The analysis aimed to find the transition between the periodic and cha-
otic response and how does it affect the topology of RPs and recurrence quantificators. 

The reconstructed recurrence plots by the constant value of the recurrence rate 
showed the general character of the system’s dynamics. The periodic solutions are ob-
tained for small values of the eccentricity and they are characterized by the diagonal struc-
ture without any disruptions. The square-like structures and isolated recurrence points 
are evidence of the chaotic motion of the bearing. 

The recurrence plots provide only the qualitative information on the system dynamics, 
so the recurrence quantificators from the Matlab CRP Toolbox were employed for the quan-
titative analysis. As the mathematical model is studied, the system is deterministic that is 
proved by the value of DET (Figure 8a). The character of bearing’s response can be roughly 
determined by the diagonal- (Figure 8b–d) and vertical-based (Figure 8e–g) quantificators, 
however, the trapping time TT and the length of the longest vertical line Vmax expresses 
the increasing nonlinearity in the clearest way for interpretation. The recurrence-time of 
the 2nd type (Figure 8i) has a similar run to TT and Vmax showing clearly the transition 
between periodic and chaotic motion by the drastic increase of the quantificator. For sup-
plementary analysis, the deformation response was recalculated with the kurtosis. Within 

Figure 9. Kurtosis is calculated for the different values of the rotor’s eccentricity.

6. Results Discussion and Summary

This article reports the results obtained in the analysis of the dimensionless mathe-
matical model for the single-row ball bearing by the recurrence-based methods. For the
variable parameter, which is changing the bearing’s dynamics, the shape error in form
of the eccentricity was used. The model was studied in a wide range of the operating
parameter showing the transition between the periodic and chaotic motion of the system.
For studying the behavior of the bearing-shaft system dynamic, the recurrence-based meth-
ods were applied in the form of recurrence plots (RPs) and the Recurrence Quantification
Analysis (RQA). The analysis aimed to find the transition between the periodic and chaotic
response and how does it affect the topology of RPs and recurrence quantificators.

The reconstructed recurrence plots by the constant value of the recurrence rate showed
the general character of the system’s dynamics. The periodic solutions are obtained for
small values of the eccentricity and they are characterized by the diagonal structure without
any disruptions. The square-like structures and isolated recurrence points are evidence of
the chaotic motion of the bearing.

The recurrence plots provide only the qualitative information on the system dynamics,
so the recurrence quantificators from the Matlab CRP Toolbox were employed for the
quantitative analysis. As the mathematical model is studied, the system is deterministic
that is proved by the value of DET (Figure 8a). The character of bearing’s response can
be roughly determined by the diagonal- (Figure 8b–d) and vertical-based (Figure 8e–g)
quantificators, however, the trapping time TT and the length of the longest vertical line
Vmax expresses the increasing nonlinearity in the clearest way for interpretation. The
recurrence-time of the 2nd type (Figure 8i) has a similar run to TT and Vmax showing
clearly the transition between periodic and chaotic motion by the drastic increase of the
quantificator. For supplementary analysis, the deformation response was recalculated
with the kurtosis. Within its course (Figure 9) the transition between periodic and chaotic
solution is identifiable as in the case of vertical line based quantificators.

The performed analysis of the nonlinear mathematical model of the ball bearing
showed the usefulness of recurrence-based methods in the identification of its dynamic re-
sponse. The transition between the periodic and chaotic motion in the variable eccentricity
domain was detected with help of recurrence plots and recurrence quantificators. This is
evidenced by the square-like structures observed at recurrence plots and radical increase or
decrease of recurrence quantificators value in chaotic motion. As many other features are
influencing the dynamic response of the ball bearings such as radial clearance or external
load, the idea of the mathematical model’s development is to analyze their influence on
the system’s dynamics in further steps applying input parameters with assumed uncer-
tainty [89]. Moreover, the model validation is planned by the experimental verification and
studying bearing’s response from acceleration measurements.
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