A Dual Kalman Filter to Identify Parameters of a Permanent Magnet Synchronous Motor

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Authors

The paper deals with a Dual Kalman Filter (DKF) to estimate parameters Ld and Lq, direct and quadrature induc-tances of a Permanent Magnet Synchronous Motor (PMSM). Using the model of the system, reference parameters are considered as a virtual measured system. In this way, the estimation of the parameters can be separated by the estimation of the states. The resulting Kalman Filter (KF) for the estimation of the parameters is a linear one characterized by the identity dynamical matrix. Simulation results show the effectiveness of the method.

Original languageEnglish
Title of host publication2020 24th International Conference on System Theory, Control and Computing (ICSTCC) : October 8-10, 2020 Sinaia, Romania, Proceedings
EditorsLucian-Florentin Bărbulescu
Number of pages5
Place of PublicationPiscataway
PublisherIEEE - Institute of Electrical and Electronics Engineers Inc.
Publication date08.10.2020
Pages619-623
Article number9259686
ISBN (print)978-1-7281-9810-1
ISBN (electronic)978-1-7281-9809-5, 978-1-7281-9808-8
DOIs
Publication statusPublished - 08.10.2020
Event24th International Conference on System Theory, Control and Computing - ICSTCC 2020 - Virtual , Virtual, Sinaia, Romania
Duration: 08.10.202010.10.2020
Conference number: 24
http://ace.ucv.ro/icstcc2020/
http://ace.ucv.ro/icstcc2020/

    Research areas

  • Kalman filter, parameter estimation, PMSM, simulations
  • Engineering