Yannick Rudolph

  1. 2025
  2. E-pub ahead of print

    Self-improvement for Computerized Adaptive Testing

    Rudolph, Y., Neubauer, K. & Brefeld, U., 2026, Machine Learning and Knowledge Discovery in Databases - Research Track: European Conference, ECML PKDD 2025, Porto, Portugal, September 15–19, 2025, Proceedings. Ribeiro, R. P., Jorge, A. M., Soares, C., Gama, J., Pfahringer, B., Japkowicz, N., Larrañaga, P. & Abreu, P. H. (eds.). Cham: Springer International Publishing, Vol. 2. p. 70-86 17 p. (Lecture Notes in Computer Science; vol. 16014 LNCS).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  3. Published

    Masked autoencoder for multiagent trajectories

    Rudolph, Y. & Brefeld, U., 02.2025, In: Machine Learning. 114, 2, 18 p., 44.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  4. 2024
  5. Published

    Masked Autoencoder Pretraining for Event Classification in Elite Soccer

    Rudolph, Y. & Brefeld, U., 26.02.2024, Machine Learning and Data Mining for Sports Analytics: 10th International Workshop, MLSA 2023, Revised Selected Papers. Brefeld, U., Davis, J., Van Haaren, J. & Zimmermann, A. (eds.). Cham: Springer Nature Switzerland AG, p. 24-35 12 p. (Communications in Computer and Information Science; vol. 2035).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  6. 2023
  7. Published

    Convolutional Neural Networks

    Rudolph, Y. & Brefeld, U., 01.01.2023, Sportinformatik: Modellbildung, Simulation, Datenanalyse und Visualisierung von sportbezogenen Daten. Memmert, D. (ed.). Berlin: Springer Spektrum, p. 207-215 9 p.

    Research output: Contributions to collected editions/worksChapter

  8. 2022
  9. Published

    Modeling Conditional Dependencies in Multiagent Trajectories

    Rudolph, Y. & Brefeld, U., 2022, In: Proceedings of Machine Learning Research. 151, p. 10518-10533 16 p.

    Research output: Journal contributionsConference article in journalResearchpeer-review

  10. 2020
  11. Published

    Graph Conditional Variational Models: Too Complex for Multiagent Trajectories?

    Rudolph, Y., Brefeld, U. & Dick, U., 2020, In: Proceedings of Machine Learning Research. 137, p. 136-147 12 p.

    Research output: Journal contributionsConference article in journalResearchpeer-review

  12. 2019
  13. Published

    Frame-based Optimal Design

    Mair, S., Rudolph, Y., Closius, V. & Brefeld, U., 23.01.2019, Machine learning and knowledge discovery in databases: European Conference, ECML PKDD 2018, Dublin, Ireland, September 10-14, 2018 : proceedings. Berlingerio, M., Bonchi, F., Gärtner, T., Hurley, N. & Ifrim, G. (eds.). Cham: Springer Nature, Vol. 2. p. 447-463 17 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 11052 LNAI).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Recently viewed

Publications

  1. Empowering Women