Professorship for Information Systems, in particular Machine Learning
Organisational unit: Professoship
Main research areas
Research
We are interested in statistical machine learning with a focus on spatiotemporal problems, such as user navigation on the web, adaptive testing and adaptive learning environments, and the coordination of football players on the pitch. While we mainly focus on basic research, we also collaborate with selected partners in academia, sports and industry in different projects.
Teaching
Our teaching focuses on introductory/advanced machine learning and data mining as well as basic statistics. We regularly offer courses in the Management & Data Science Master and the Information Systems Bachelor programs. Exemplary courses comprise Deep Learning (Data Science), Statistics (Information Systems), and Machine Learning & Data Mining (Engineering).
- Published
A Unified Contextual Bandit Framework for Long- and Short-Term Recommendations
Tavakol, M. & Brefeld, U., 30.12.2017, Machine Learning and Knowledge Discovery in Databases: European Conference, ECML PKDD 2017 Skopje, Macedonia, September 18 – 22, 2017; Proceedings, Part II. Ceci, M., Hollmen, J., Todorovski, L., Vens, C. & Dzeroski, S. (eds.). Springer, Vol. 2. p. 269-284 16 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 10535 LNAI).Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
- Published
Data-driven analyses of electronic text books
Boubekki, A., Kröhne, U., Goldhammer, F., Schreiber, W. & Brefeld, U., 2016, Solving large scale learning tasks: Challenges and algorithms : essays dedicated to Katharina Morik on the occasion of her 60th birthday. Michaelis, S., Piatkowski, N. & Stolpe, M. (eds.). Cham: Springer International Publishing AG, p. 362-376 15 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 9580).Research output: Contributions to collected editions/works › Contributions to collected editions/anthologies › Research
- Published
Feature Extraction and Aggregation for Predicting the Euro 2016
Tavakol, M., Zafartavanaelmi, H. & Brefeld, U., 09.2016, In: CEUR Workshop Proceedings. 1842, 1842, 7 p.Research output: Journal contributions › Conference article in journal › Research › peer-review
- Published
Exploiting ConvNet diversity for flooding identification
Nogueira, K., Fadel, S. G., Dourado, I. C., De Werneck, R. O., Munoz, J. A. V., Penatti, O. A. B., Calumby, R. T., Li, L. T., Dos Santos, J. A. & Torres, R. D. S., 09.2018, In: IEEE Geoscience and Remote Sensing Letters. 15, 9, p. 1446-1450 5 p., 8398414.Research output: Journal contributions › Journal articles › Research › peer-review
- Published
Adaptive Item Selection Under Matroid Constraints
Bengs, D., Brefeld, U. & Kröhne, U., 07.08.2018, In: Journal of Computerized Adaptive Testing. 6, 2, p. 15-36 22 p.Research output: Journal contributions › Journal articles › Research › peer-review
- Published
Infinite Mixtures of Markov Chains
Reubold, J., Boubekki, A., Strufe, T. & Brefeld, U., 2018, New Frontiers in Mining Complex Patterns: 6th International Workshop, NFMCP 2017 : held in conjunction with ECML-PKDD 2017, Skopje, Macedonia, September 18-22, 2017 : revised selected papers. Appice, A., Loglisci, C., Manco, G. & Masciari, E. (eds.). Cham: Springer, p. 167-181 15 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); vol. 10785 LNAI).Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
- Published
MDP-based itinerary recommendation using geo-tagged social media
Gaonkar, R., Tavakol, M. & Brefeld, U., 25.10.2018, Advances in Intelligent Data Analysis XVII - 17th International Symposium, IDA 2018, Proceedings. Duivesteijn, W., Siebes, A. & Ukkonen, A. (eds.). Basel: Springer Nature AG, p. 111-123 13 p. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); no. 11191).Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
- Published
Probabilistic movement models and zones of control
Brefeld, U., Lasek, J. & Mair, S., 15.01.2019, In: Machine Learning. 108, 1, p. 127-147 21 p.Research output: Journal contributions › Journal articles › Research › peer-review
- Published
Coresets for Archetypal Analysis
Mair, S. & Brefeld, U., 2020, 32rd Conference on Neural Information Processing Systems (NeurIPS 2019): Vancouver, Canada, 8-14 December 2019. Wallach, H. & Larochelle, H. (eds.). Red Hook: Curran Associates, Vol. 10. p. 7215-7223 9 p. (Advances in neural information processing systems; vol. 32).Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
- Published
Zur empirischen Beforschung des mBooks Belgien: Die Chancen eines Methodenmix
Schreiber, W., Wagner, W., Trautwein, U. & Brefeld, U., 10.2019, Das Geschichtsschulbuch: Lehren – Lernen – Forschen . Kühberger, C., Bernhard, R. & Bramann, C. (eds.). Münster: Waxmann Verlag, p. 57-80 24 p. (Salzburger Beiträge zur Lehrer/innen/bildung; vol. 6).Research output: Contributions to collected editions/works › Contributions to collected editions/anthologies › Research › peer-review