Professorship for Modelling and Simulation of Technical Systems and Processes
Organisational unit: Professoship
Main research areas
By combining methods from the fields of information technology and operations research, production processes can be designed to be more efficient. The application of algorithms can be developed and tested in our own laboratory through the use of demonstrators.
We can simulate sequence planning and the optimisation of set-up times, as well as maintenance plans or resource allocation. The use of autonomous robots and the development of efficient planning strategies for vehicles can also be evaluated through simulations. Parameter studies and sensitivity analyses are also possible thanks to a range of interfaces.
Machine learning methods such as Gaussian processes & neural networks can predict figures based on system utilisation. Among other things, this enables the dynamic selection of control rules. What’s more, this also enables the evaluation of cause-effect relationships within processes, as well as an evaluation of the correlations between (input) parameters and their effects on the process.
Some examples of typical problems include optimising the installation and maintenance of wind turbines, optimising how high-priority tasks are dealt with in production operations, optimising intralogistics using the example of goods provision in the retail industry, dynamic rule selection in sequence planning and much more.
- 2023
- Published
Dynamically adjusting the k-values of the ATCS rule in a flexible flow shop scenario with reinforcement learning
Heger, J. & Voss, T., 2023, In: International Journal of Production Research. 61, 1, p. 147-161 15 p.Research output: Journal contributions › Journal articles › Research › peer-review
- 2022
- Published
Using Decision Trees and Reinforcement Learning for the Dynamic Adjustment of Composite Sequencing Rules in a Flexible Manufacturing System
Voß, T., Heger, J. & Zein El Abdine, M., 09.2022, In: Simulation Notes Europe. 32, 3, p. 169-175 7 p.Research output: Journal contributions › Conference article in journal › Research › peer-review
- Published
Dynamic Lot Size Optimization with Reinforcement Learning
Voss, T., Bode, C. & Heger, J., 01.01.2022, Dynamics in Logistics : Proceedings of the 8th International Conference LDIC 2022, Bremen, Germany. Freitag, M., Kinra, A., Kotzab, H. & Megow, N. (eds.). Cham: Springer Science and Business Media B.V., p. 376-385 10 p. (Lecture Notes in Logistics).Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
- 2021
- Published
Closed-loop control of product geometry by using an artificial neural network in incremental sheet forming with active medium
Thiery, S., Zein El Abdine, M., Heger, J. & Ben Khalifa, N., 01.11.2021, In: International Journal of Material Forming. 14, 6, p. 1319–1335 17 p.Research output: Journal contributions › Journal articles › Research › peer-review
- Published
Entscheidungsbäume und bestärkendes Lernen zur dynamischen Auswahl von Reihenfolgeregeln in einem flexiblen Produktionssystem
Heger, J., Zein El Abdine, M., Sekar, S. & Voß, T., 26.08.2021, Simulation in Produktion und Logistik 2021: Erlangen, 15. - 17. September 2021. Franke, J. & Schuderer, P. (eds.). Göttingen: Cuvillier Verlag, p. 337-346 10 p. (ASIM-Mitteilung; vol. AM 177).Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
- Published
Modeling the Quarter-Vehicle: Use of Passive Sensor Data for Road Condition Monitoring
Kortmann, F., Horstkötter, J., Warnecke, A., Meier, N., Heger, J., Funk, B. & Drews, P., 15.07.2021, In: IEEE Sensors Journal. 21, 14, p. 15535-15543 9 p., 9281332.Research output: Journal contributions › Journal articles › Research › peer-review
- Published
Outperformed by a Computer? - Comparing Human Decisions to Reinforcement Learning Agents, Assigning Lot Sizes in a Learning Factory: 11th Conference on Learning Factories, CLF2021
Voß, T., Rokoss, A., Maier, J. T., Schmidt, M. & Heger, J., 06.2021, Rochester: Elsevier Inc., 6 p. (SSRN).Research output: Working paper › Working papers
- Published
Dynamische Losgrößenoptimierung mit bestärkendem Lernen
Voß, T., Bode, C. & Heger, J., 2021, In: ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb. 116, 11, p. 815-819 5 p.Research output: Journal contributions › Journal articles › Research › peer-review
- 2020
- Published
Dynamically changing sequencing rules with reinforcement learning in a job shop system with stochastic influences
Heger, J. & Voß, T., 14.12.2020, Proceedings of the 2020 Winter Simulation Conference, WSC 2020. Bae, K.-H., Feng, B., Kim, S., Lazarova-Molnar, S., Zheng, Z., Roeder, T. & Thiesing, R. (eds.). IEEE - Institute of Electrical and Electronics Engineers Inc., p. 1608 - 1618 11 p. 9383903. (Proceedings - Winter Simulation Conference; vol. 2020-December).Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review
- Published
Detecting Various Road Damage Types in Global Countries Utilizing Faster R-CNN
Kortmann, F., Talits, K., Fassmeyer, P., Warnecke, A., Meier, N., Heger, J., Drews, P. & Funk, B., 10.12.2020, Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020: Proceedings, Dec 10 - Dec 13, 2020 • Virtual Event. Wu, X., Jermaine, C., Xiong, L., Hu, X. T., Kotevska, O., Lu, S., Xu, W., Aluru, S., Zhai, C., Al-Masri, E., Chen, Z. & Saltz, J. (eds.). Piscataway: IEEE - Institute of Electrical and Electronics Engineers Inc., p. 5563-5571 9 p. 9378245. (Proceedings - 2020 IEEE International Conference on Big Data, Big Data 2020).Research output: Contributions to collected editions/works › Article in conference proceedings › Research › peer-review