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Abstract
A strategy to adjust the product geometry autonomously through an online control of the manufacturing process in incremental
sheet forming with active medium is presented. An axial force sensor and a laser distance sensor are integrated into the process
setup to measure the forming force and the product height, respectively. Experiments are conducted to estimate the bulging
behavior for different pre-determined tool paths. An artificial neural network is consequently trained based on the experimental
data to continuously predict the pressure levels required to control the final product height. The predicted pressure is part of a
closed-loop control to improve the geometrical accuracy of formed parts. Finally, experiments were conducted to verify the
results, where truncated cones with different dimensions were formed with and without the closed-loop control. The results
indicate that this strategy enhances the geometrical accuracy of the parts and can potentially be expanded to be implemented for
different types of material and geometries.

Keywords Incrementalsheet formingwithactivemedium .Closed-loopcontrol .Artificialneuralnetworks .Geometricalaccuracy

Introduction

Incremental sheet forming with active medium (IFAM) is a
novel manufacturing process to produce concave-convex geo-
metrical parts in small lot sizes [1]. This process an extension
of the well-known single point incremental forming (SPIF) by
an active medium, which applies pressure on the bottom sur-
face of the blank during the forming process. Depending on
tool path and pressure control, concave and convex forming
operations are feasible in IFAM and can be sequentially com-
bined. Shaping complex parts requires neither intermediate
turning of the blank nor a dedicated die nor a counter tool like
other common incremental forming processes. Therefore,
IFAM preserves the flexibility of incremental forming pro-
cesses. The active medium can be gas or liquid. Ben Khalifa
and Thiery [1] used pressurized air for convex forming.

Moreover, Kumar and Kumar [2] utilized pressurized fluid
for concave forming. Plastic deformation occurs only in the
contact zone between tool and blank due to stress concentra-
tion. For this reason, forming forces and pressure of the active
medium are comparatively low. Ben Khalifa and Thiery [1]
investigated the minimum pressure that is required to enable
convex forming. While machining AA1050A-H14 sheets
with a thickness of 1 mm, the relatively low minimum pres-
sure value of 0.35 bar can lead to cracks if the forming oper-
ation is repeated multiple times at the same area. Cracks are
the dominant failure mechanism of IFAM and are reported for
both convex and concave forming [1, 3, 4]. On the one hand,
pressure has to be adjusted during the process to avoid cracks
and to limit bulging. On the other hand, a pre-defined pressure
is necessary to achieve a target shape.

The manufacturing procedure in incremental sheet forming
processes begins with the definition of the desired product
shape by computer-aided design (CAD). Subsequently,
computer-aided manufacturing (CAM) can easily generate
the tool path for SPIF applications by moving the tool along
the product contour [5]. This tool path can then be transferred
as G-code to a CNC machine to start the forming operation.
CAM solutions reach their limits if either complex parts are to
bemanufactured or a second tool, for example in double-sided
incremental forming (DSIF), has to be considered. For this
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purpose, Ndip-Agbor et al. [6] developed specialized algo-
rithms to ensure a quick tool path generation. Nonetheless,
deviation from the target geometry can arise during the
forming operation. Having no support under the sheet, SPIF
has inferior accuracy than other incremental forming process-
es. Springback and undesired bending are the dominant phe-
nomena that negatively affect its accuracy. Several strategies
have been developed to reduce or compensate these inaccura-
cies. One possibility is to use a dedicated rig to define the
transition between flange and part wall more clearly [7].
Another possibility is to adapt the tool path in accordance with
the real deviation after a first part is manufactured [8].
Afterwards, the adapted tool path can be used to produce a
second part with better accuracy. Ambrogio et al. [9] evaluate
elastic springback and provide a simple approach to improve
accuracy by emphasizing finite element method (FEM) as an
appropriate tool to predict the part shape. The previous men-
tioned strategies are examples taken from a wide-ranging field
of investigations that have been published on the issue of
improving the geometrical accuracy in incremental forming.
However, IFAM requires setpoints for the pressure of the
active medium besides the tool path definitions. CAM sys-
tems are not designed in their function to calculate such
setpoints and even FEM software cannot be used to determine
the setpoints in reasonable time. A control system might be a
feasible solution to regulate the pressure online.

The geometrical accuracy as well as other product proper-
ties are often the target of closed-loop control systems in metal
forming. Uncertainties in production processes lead to devia-
tion from a desired target value or process instability. The
uncertainties might have non-repetitive behavior, for example,
uneven lubrication or repetitive behavior such as tool wear
[10]. Closed-loop control is one approach to cope with these
uncertainties [11]. Closed-loop control systems can be distin-
guished into three types [12]. The equipment closed-loop con-
trol ensures that the actuators work exactly like the predefined
trajectory without concerning workpiece state or product
properties. The equipment is encapsulated by the online
closed-loop control, which reacts to changes in the workpiece
state during the manufacturing process. The offline closed
loop control builds the outer shell and measures the product
properties after the manufacturing process. One important el-
ement of a closed-loop control is the control model, which
might be a conventional PID control or a meta-model such
as artificial neural networks (ANNs) [12]. Additionally, a sen-
sor is required to measure the workpiece state, though the
integration of sensors is challenging because the accessibility
of forming tools is restricted [11]. However, this does not
apply for incremental forming, which does not have large
dedicated dies. Allwood et al. [13] employed a camera system
to detect the part shape during SPIF and implemented an on-
line closed-loop control to adjust the tool path accordingly.
Their control scheme is based on a discrete principle and

measures the part shape once for each cycle. In contrast,
Filice et al. [14] presented an online control based on contin-
uous force measurement. The vertical forming force was used
as an indicator for sheet thinning and process failure. If a
critical state is reached, tool diameter and step down are auto-
matically adjusted.

The recent advancements in the context of Industry 4.0
have offered an opportunity in the transformation of today’s
manufacturing paradigm to smart manufacturing [15]. As a
result, datasets generated by modern manufacturing systems
are experiencing explosive growth [15]. The former, in com-
bination with the advancements in computational capabilities,
has resulted in machine learning approaches based on ANNs
gaining a lot of popularity within the manufacturing commu-
nity as a whole, both in industry and academia. They are used
for a wide range of applications, including tool wear monitor-
ing and forecasting [16, 17], decision support systems [18],
process parameter predictions [19], quality control [20, 21],
etc. They are also gaining more traction within incremental
sheet forming; specifically, Khan et al. [22] used ANNs to
predict local springback errors in an SPIF process and adjust-
ed the tool path accordingly. Hartmann et al. [23] developed
an automated process for which a deep neural network can
generate tool paths based on the desired geometry for an in-
cremental sheet metal free-forming process for non-complex
parts. Kurra et al. [24] used the tool diameter, step depth, wall
angle, feed rate and lubricant type to estimate the surface
roughness using ANNs. Ambrogio et al. [25] used an ANN
to predict failure in an incremental sheet forming process
where the formability and the final height of the part were
investigated through varying geometrical properties (wall in-
clination angles).

In their previous work, Ben Khalifa and Thiery [1]
formed concave-convex parts while manually adjusting
the pressure. As such, forming parts using constant pres-
sure levels was not investigated. This paper aims to com-
pare the geometrical accuracy of formed parts using con-
stant pressure against parts formed with dynamically ad-
justed pressure. However, the absence of a die or a dedi-
cated tool makes the dynamic control of the IFAM process
challenging. In order to do so, a method that is capable of
dealing with the intrinsically complex interrelations of the
process parameters is required. Hence, mathematical
modelling, in the form of ANNs is selected to control the
pressure necessary to improve the geometrical accuracy
and further automate the process.

The rest of the paper is structured as follows: The experi-
mental setup is first introduced including the process defini-
tion along with its parameters. Then, the use of ANNs for
offline pressure prediction is described and the full control
strategy summarized. Finally, experiments are conducted to
compare the results for truncated cones formed using constant
and dynamically adjusted pressure.
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Experimental setup and control design

Process description

The process of manufacturing a convex truncated cone by
IFAM is shown in Fig. 1. At the beginning, the pressure p
is applied to the bottom of the blank and the tool moves to
the start position of the tool path, which is located near the
center of the blank (Fig. 1a). The vertical position of the
tool z is defined in relation to the unpressurized blank sur-
face and is restricted within a short distance during the
process to establish contact between the tool and the blank.
Subsequently, the tool follows a predefined path and
moves in concentric cycles towards the margin of the blank
(Fig. 1b). Two consecutive cycles have a horizontal dis-
tance Δx between each other. The part emerges upwards
with every cycle and the process is designated as positive
or convex forming for this reason. The tool path is flat and
the tool moves forward in horizontal direction until a de-
sired number of cycles n is completed (Fig. 1c). After re-
moving the tool and releasing the pressure, the manufactur-
ing process is finished.

The setup is placed on the bench of a milling machine and
includes the workpiece, blank holder and tool. The workpiece
is fixed by the blank holder to the pressure chamber to build a
closed system. A laser distance sensor is installed by a holding
device on the bottom of the pressure chamber (Fig. 2) to detect
the part height. The measurable distance of this sensor reaches
from a minimum of 30 mm to a maximum of 130 mm. The

sensor is aligned so that the laser beam coincides with the
center of the blank. There is an offset distance hoff between
the sensor and the bottom surface of the blank that needs to be
measured at the beginning of each manufacturing process.
The sensor cable runs through a sealed cable gland to the
outside of the pressure chamber. Pressurized air is used as an
active medium, and its pressure can be observed by a manom-
eter or recorded by a pressure sensor. A tube connects the air
supply of the pressure chamber with a pressure control valve.
The valve has a working range from 0.0 to 6.0 bar, and its
setpoint can be changed during the manufacturing process. Oil
is used for all experiments to reduce friction and tool wear.
The tool has a hemispherical shape with a radius of 5 mm. An
axial force sensor is integrated into the tool holder, and the
force can be measured even during tool rotation. The rotation-
al speed is 60 rpm for the present investigation and the vertical
tool position is kept constant at z = 0 mm. The tool is attached
to the spindle of the milling machine, and the information
about the tool position and actual NC block are sent to a
measurement computer, which also collects the data of the
pressure, force and laser sensor during the manufacturing pro-
cess. Examples for processible materials are pure aluminum
with up to 2 mm thickness or deep drawing steel DC04 with
1 mm thickness. Pure aluminumAA1050A-H24, which is in a
half-hard state and has a thickness of 0.96 mm, is used for all
present experiments. The initial flow stress of this material
amounts 117 MPa in rolling direction. According to the di-
mensions of the pressure chamber, the blanks have a shape of
280 mm× 280 mm and an area of 190 mm× 190 mm inside

(a)

(b) (c)

Workpiece

Blank
holder

Manometer

Pressure
sensor

Air supply Machine bench

Tool Collet chuckFig. 1 Manufacturing process of
incremental sheet forming with
active medium: a first contact
between tool and workpiece, b
intermediate cycle, c final cycle of
the manufacturing process
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the clamping. The rolling direction of the blank is orientated
parallel to the X-axis of the milling machine.

Experimental conditions

The part height h grows during IFAM with every cycle of the
tool path. Unlike SPIF, in which the tool path predefines the
final geometry, the final geometry and the part height h in
IFAM result from the interaction of the tool path and the
pressure. With the same tool path but with a different pressure
level, parts with other heights or wall angles can be
manufactured. Therefore, experiments are conducted to eval-
uate the bulging behavior enclosing height and force measure-
ment and to generate a dataset. Five different tool paths have
been defined for these experiments, of which three are shown
in Fig. 3. The circular tool paths are distinguished by the
number of cycles n and by both the start and end position.
The vertical tool positon is z = 0 mm and the horizontal step
size is Δx = 1 mm for all paths. The feed rate is set to f =
1500 mm/min for the whole process. The pressure was held
constant for each part, and was varied in increments of
0.025 bar for different parts with different paths, as can be
seen in Table 1. The pressure was stepwise increased until
cracks occurred. No target geometry was defined for these
experiments but instead the actual height and also the vertical
force were recorded with a frequency of 50 Hz. Afterwards,
the measurement protocols were analyzed for each cycle. The
vertical force F is then the average value from all recorded
values during one cycle. The product height h is defined as the
average of 5 values at the end of each cycle.

Artificial neural networks

Neural networks and supervised machine learning algorithms
in general learn from labeled examples and are evaluated
based on how well they can generalize their learning on un-
seen examples. Specifically, hidden patterns and non-linear
relationships within the data are learned by the algorithms.
This way, the algorithms can react to yet unknown instances.
In the case where the relation between the desired part shape
and the process parameters is characterized by a high degree
of complexity, it is integral to use algorithms which can rep-
resent and learn the interrelations among the data. The data
retrieved from the experiments in Table 1 allow the training of
an algorithmwhich can predict the pressure levels for different
tool paths and geometries. ANNs consist of a collection of
interconnected processing elements called neurons that are
combined as layers. The first layer being the input layer, the
last layer the output layer and in-between the hidden layers.
The neurons process the input simultaneously through a series
of matrix multiplications where the hidden layers perform
nonlinear mapping between the input and output layers. The
output signal of a neuron is fed to other neurons as input
signals. For an input to the network Xm × 1, the following
layer’s output Yn × 1, may be expressed by Eq. 1:

Y ¼ σ W ∙X þ Bð Þ ð1Þ
WhereW is an n ×m weight matrix, σ is the nonlinear activa-
tion function and B a vector bias which adjusts the threshold at
which the neuron gets activated [26]. Such a feed-forward
neural network is trained by back-propagationwith supervised

h
h o

ffLaser
sensor

Holding
devicePressure

chamber

Blank
holder

Workpiece

Sealing

190 mm

45 mm

45 mm

10
0 

m
m

X

Y

ZFig. 2 Onlinemeasurement of the
part height h by including a laser
distance sensor into the pressure
chamber
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learning. During training, known input-output combinations
are repeatedly passed through the network to determine the
loss function (error) of a given prediction. Consequently, the
weights W and biases B are adjusted in order to minimize the
loss function of the training set. If the error is too high, the
weights and biases are updated. The new weights are again
used for prediction, and the error is re-calculated. This process
continues until the error or the number of iterations reaches a
pre-determined value. The main drawback of ANNs is their
tendency to overfit the learning on the training set, resulting in
them not generalizing very well. Additionally, adjusting the
network’s hyperparameters to maximize performance can be
challenging and time consuming. In order to overcome
overfitting, three forms of regularization are employed:

& Dropout: Random input units are set to zero with a pre-
defined ratio. Through dropping out subsets of features
during training, overfitting is reduced.

& Validation set: While the model uses the training set to
learn and fit the parameters, this fit is tested on a separate
validation set.

& Early stopping: If the training error on the validation set
does not decrease within the next 50 epochs, then training
is halted.

Furthermore, an exhaustive search along with trial and er-
ror was performed in order to find the best set of
hyperparameters suited to the dataset at hand. Specifically,
the topology of the network, dropout ratio, batch size, and
weight initialization have been explored and taken into con-
sideration. The range of the parameters to be optimized with
regard to topology consisted of the following:

& Hidden layers: {1, 2, 3, 4}
& Neurons per layer: {10, 15, 20, 25, 50, 100, 125, 150, 200,

250, 500}

0

20

30

50

60

70

Y-
Po

si
tio

n 
in

 m
m

40

10

0 10 20 30 40 50 60 70 80

n = 11 cycles
n = 21 cycles
n = 41 cycles

X-Position in mm

80

Start point
End point

Tool
movement

10 mm

20 mm

40
 m

m

1 
m

m
Fig. 3 Depiction of one quarter of
the axisymmetric tool path

Table 1 Testing parameters to
investigate the bulging behavior Part Minor radius Major radius Number of cycles n Pressure range

Small 50 mm 60 mm 11 0.475–0.625 bar

Middle 45 mm 65 mm 21 0.450–0.600 bar

Narrow 35 mm 55 mm 21 0.525–0.675 bar

Wide 55 mm 75 mm 21 0.400–0.550 bar

Large 35 mm 75 mm 41 0.425–0.575 bar
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ANNs with many hidden layers, i.e. deep ANNs, were de-
veloped to learn complicated functions in high-dimensional
spaces and overcome situations where traditional methods
achieve unsatisfactory generalization rates. Deep networks,
however, require a sufficiently large dataset to generate satis-
factory results. The results of the exhaustive search support this
notion, where ANNs with multiple hidden layers outperformed
the ones with a singular hidden layer. The former will be further
presented in “Offline pressure prediction” section.

Control strategy

The goal of the control is to ensure that a certain target height
ht(i) is achieved for each cycle i during the manufacturing pro-
cess. The primary goal of this control strategy is the improve-
ment of the geometrical accuracy though the secondary goal to
avoid cracks is accomplished at the same time. Therefore, it is
classified as online closed-loop control of geometrical product
properties. The control scheme is subdivided into a discrete
control, which runs one time per forming cycle, and a continu-
ous forming process (Fig. 4), which is denoted by the process
time t. At the beginning of each cycle i, the target height ht(i)
that should be achieved after the cycle i is compared with the
actual height ha(i − 1) of the previous cycle (Eq. 2).

Δhc ið Þ ¼ ht ið Þ−ha i−1ð Þ ð2Þ

The control deviation between them Δhc(i) is the required
growth of the part during the cycle i so that the part shape
follows a desired trajectory. The control then estimates the
corresponding pressure p(i) for the cycle i using an ANN.
With this strategy, not only an automated manufacturing pro-
cess becomes possible but also disturbances eP(t) can be com-
pensated in subsequent cycles.

The control program is written in LabVIEW, and the ANN is
integrated in the form of a Python function into its structure. The
program reads the information concerning the target height ht(i)
and the circle diameter da(i) of the tool path from a spreadsheet
file. Additional settings regarding the part shape (small, middle,
large) can be made before the experiments. A set of rules con-
verts the actual NC block of the milling machine into the actual
cycle i, and corresponding subroutines were carried out when
theNC block changes. After each cycle, themeasurement data is
prepared so that the averaged force Fa(i − 1) and the actual
height ha(i − 1) of the completed cycle are available. From the
perspective of control system engineering, this discrete working
principle includes one dead cycle until the data is ready to use.
To make sure that this data does not lead to invalid inputs or
inappropriate outputs, both variables are limited to certain
boundaries. The target height differenceΔht(i) is restricted to a
range from 0 mm to an adjustable valueΔhmax. This restriction
avoids negative input values, which physically cannot exist for
the convex forming process. Additionally, the input cannot grow
to an unreasonable high value, which would require a high
pressure and would lead to cracks. For the same reason, the
output pt(i) has an adjustable upper limit of pmax. The restrictions
on the upper limit are motivated by process safety rather than
control accuracy. The lower limit is fixed to 0.0 bar because a
vacuum is not intended. The target pressure pt(i) is then trans-
mitted as continous signal pt(t) to the pressure valve.

The time sequence of the control is depicted in Fig. 5. Both
the milling machine and the LabVIEW program are synchro-
nized by the help of NC blocks. Due to the dead cycle, there
are differences between the process start, the periodic pressure
adjustment and the process end. At the beginning, the tool moves
in safe distance above the blank to the start positon in X- and Y-
coordinates. The start position is located 1mm closer towards the
center of blank than the radius of the first cycle. When the tool
reaches the start position, a pressure is applied on the blank. Since

Continuous
process

Discrete
control

Pressure
control valve

Forming
process

Neural
network

Input
boundary

Output
boundary

Conversion
block to cycle

Cyclical
averaging

Cyclical
detection

Geometry

NC block

d ia( )

h it( ) Δh it( )Δh ic( ) p i( ) p tt( ) p ta( )

e tP( )

h t( ) h ta( )

F ta( )

h ta( )

i

F ia( - 1)

h ia( - 1)

+

-

+ +

Fig. 4 Closed-loop control scheme to adjust the product height during IFAM
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there are no process data available prior to the first cycle and the
control algorithm cannot be executed, the pressure of the first
cycle pt(1) is set to 0.65 bar for all tests. Subsequently, the tool
moves downwards with a feed rate ffast = 1500 mm/min until it
reaches the vertical positon z = 0 mm and contact between the
tool and the blank is established. The rotational speed does not
change during the manufacturing process and is set to 60 rpm.
The feed rate is then set to fslow = 4 mm/min so a period of 15 s
remains to detect the reference height hoff by averaging five
measurement values. When the position of the first cycle is
reached, the feed rate speeds up again and the forming operation
begins. The target pressure pt(t) is constant throughout each cycle
and the control system passively records the forming force Fa(t).
At the end of each cycle, the feed rate slows down to give the
control algorithm a time of 15 s until the next cycle starts.Within
this time, the force Fa(i− 1) is determined by averaging the re-
corded force values Fa(t) and the actual height ha(i − 1) is

calculated as mean value of five current measurements of ha(t).
Afterwards, the control algorithm is executed including the
boundary conditions to predict the pressure pt(t) for the next
cycle. Finally, the control valve adjusts the pressure inside the
chamber according to this value. A new pressure value does not
need to be calculated at the end of the last cycle. However, the
data of this cycle are acquired while the tools moves slowly
1 mm towards the margin of the blank. In the final step, the
pressure is released and the tool separates from the blank.

The controlling concept is evaluated by manufacturing
truncated cones in three different sizes (Table 2). The narrow
and wide parts according to Table 1 are only used for training
purposes and are not considered for the controlling concept.
The corresponding tool paths are similar to the ones described
in Fig. 3 despite the fact that they have one cycle less. The
final target height of large parts, for example, is defined as
ht(n) = 70 mm with an ideal growth of 1.75 mm per cycle.

END OF
CYCLE   - 1i

Averaged
force (  - 1)F ia

Detect actual
height (  - 1)h ia

Use ANN
for prediction

Adjust pressure
to pt( )i

PROCESS
START

Apply pressure
(1) = 0.65 barpt

Move to
start postion

Establish
contact

Reduce
feed rate

Detect offset
height hoff

Increase
feed rate

START OF
CYCLE 1

START OF
CYCLE i

Increase
feed rate

Reduce
feed rate

Release
pressure

Separate
contact

PROCESS
END

END OF
CYCLE n

Reduce
feed rate

Increase
feed rate

Averaged
force ( )F na

Detect actual
height ( )h na

Fig. 5 Three subroutines for the
closed-loop control of IFAM:
process start, periodic pressure
adjustment between cycles and
process end
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Table 2 Tool path and target
geometry definitions Part Minor radius Number of cycles n Target height ht(n) Wall angle α

Small 50 mm 10 17.5 mm 60.26°

Middle 45 mm 20 35.0 mm 60.26°

Large 35 mm 40 70.0 mm 60.26°
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Fig. 6 Height growth ha(i) during the manufacturing process: a small parts (n = 11), b middle-sized parts (n = 21) and c large parts (n = 41)
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Only if the height differenceΔha(i) during the manufacturing
process is identical with this ideal growth, a conforming target
wall angle of 60.26° is achievable, which is equivalent for all
parts. For these target geometries, the control strategy by using
ANN is compared with the manufacturing process without
control algorithm as reference.

Results and discussion

Bulging behavior

In this section, the bulging behavior of the different tool paths
described in section 2.2 is summarized for a reduced selection
of geometries and pressure levels. The development of the

product height ha(i) can be seen in Fig. 6. Fundamental find-
ings indicate the great influence of the pressure p and the
number of cycles n on the product height. Either a higher
pressure or a higher number of cycles leads to a larger product
height. However, when the pressure was set too high and
cracks occurred, the forming process could not be continued
and the parts did not achieve the maximum height that was
obtainable with a lower pressure. Other than the curve of
manufacturing a middle-sized part with a pressure of
0.475 bar, which has an almost homogeneous slope at any
point, most curves are characterized by a non-linear trend with
an increasing growth rate. The height differenceΔha(i), Eq. 3,
describes this issue in more detail and is shown in Fig. 7.

Δha ið Þ ¼ ha ið Þ−ha i−1ð Þ ð3Þ
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Especially, the small parts, Fig. 7a, and the middle-sized
parts, Fig. 7b, show an almost linear development of the
curve. Corresponding to Fig. 6b, the height difference does

not increase for the pressure p = 0.475 bar. In contrast, the
large parts behave different at the beginning, where the tool
start point is closer towards the center of the blank. The height
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Fig. 8 Development of the
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Table 3 Number of samples within the dataset, before and after
eliminating anomalies and extrapolation

Part Original Non-
extrapolated

Extrapolated

Small 75 75 300

Middle 147 146 584

Narrow 147 146 584

Wide 147 139 556

Large 287 276 1104

Total 803 782 3128

Table 4 Two consecutive cycles for a small-sized truncated cone after
extrapolating the first cycle

Geometry da(i) i Δha(i) Fa(i) pt(i)

Small 100 1 0.7819 226.14 0.475

Small 100 1 0 226.14 0.35

Small 100 1 0.391 226.14 0.4125

Small 100 1 1.1729 226.14 0.5375

Small 102 2 0.6658 227.27 0.475

Original cycles are shown in bold

1328 Int J Mater Form (2021) 14:1319–1335



difference of the large parts is almost constant and lower than
the height difference of the smaller parts within the first ten
cycles. It can be deduced that the pressure has a lower influ-
ence on the height growth within these cycles. However, be-
yond the 10th cycle, the influence of the pressure is consider-
able and the height difference increases. Regarding all shapes,
a high risk of cracks can be related to a combination of high
pressure values and height differences Δha(i) ≥ 3 mm.

The development of the vertical force Fa(i) is depicted in
Fig. 8 where, generally, a higher pressure causes a higher
force. The force is initially in a range from 230 N to 300 N
and increases strongly during the first ten cycles. After that,
the forces curves flatten, stagnate or even decrease in some
cases. The vertical force reaches values between 360 N and
460 N in the end of the manufacturing process. It can be
concluded that in high pressure situations, forces Fa(i) ≥
460 N are an indicator for imminent cracks. Moreover, the
force increases at a slower rate for larger parts than for the
smaller ones. For example, in the fifth cycle where pressure
p = 0.575 bar, the force Fa(5) amounts to 304 N for a large part
whereas it is already at 405 N for a middle-sized part. A
possible explanation for this is the fact that the start point of

the tool is located closer towards the blank’s center and con-
sequently the forming condition might be different there.

In summary, there is no linear or constant relationship be-
tween the product height ha(i) and the pressure p.
Additionally, the parameters are continuously changing
throughout the manufacturing process, rendering it more
prone to failure. Prior to using ANNs for learning the interre-
lations among the parameters, the data generated from the
experiments is first described and undergoes pre-processing
in the following section.

Data description and extrapolation

During training, the ANN used in order to predict pressure has
five inputs and one output, namely: Geometry (Table 1), circle
diameter of the tool path da(i), current cycle i, height differ-
ence Δha(i), average forming force Fa(i) and pressure pt(i),
respectively. While geometry is an ordinal categorical vari-
able, all other variables and outputs are continuous. The orig-
inal dataset consists in total of 803 observations for all geom-
etries, as shown in Table 3. From there on, it undergoes a
series of adjustments. First, invalid cycles within the dataset
are removed. Invalid cycles are defined as instances after a
crack appears in the part. On the one hand, these instances
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Fig. 9 Dataset for training the
ANNs on the example of small
truncated cones (Fig. 6a): a origi-
nal data and b extrapolated data

Table 5 ANN model parameters for the extrapolated dataset

Parameter Value

Hidden layers 3

Neurons per hidden layer 500, 250, 150

Dropout ratio 0.1

Batch size 32

Optimizer Adam

Learning rate 0.001

Iterations 329

Kernel initializer Normal

Table 6 Performance across several metrics for: a ANN non-
extrapolated data and b ANN extrapolated data c linear regression d
polynomial regression

Model R2 train R2 test MSE train MSE test MAE train MAE test

a 0.962 0.94 0.0018 0.0028 0.024 0.032

b 0.984 0.978 0.0008 0.0011 0.015 0.018

c 0.76 0.761 0.0124 0.138 0.074 0.081

d 0.964 0.967 0.0017 0.002 0.023 0.026
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give rise to false measurements of the height, and on the other
hand, the forming process cannot be continued once a crack
appears, since the pressure in the pressure chamber can no
longer be maintained. A benchmark ANN is trained using
the remaining 782 observations and compared with a better
performing one that is trained with extrapolated data. The
reasons behind extrapolating are two-fold: first, to project
and extend the known pressure-height relationship into areas
which are not covered by the experiments, and second, to
generate more observations. For all points, the extrapolation
occurs linearly and begins at p = 0.35 bar, which is considered
to be the minimum pressure at which deformation can take
place for pure Aluminum, as used with comparable hardening
states in [1] and in the experiments conducted in this work.
This procedure can be seen in Fig. 9, as well as in Table 4.
Though the extrapolation is linear, it was only performed on
each cycle independently. Consequently, it does not affect the
non-linear relationship between the product height ha(i) and
the pressure p.

After extrapolating, the data contains 3128 observations to
be used for training and testing purposes. The input and output
variables were normalized using the max-min normalization
method before training. Each independent variable x was
mapped to the range [−1, 1] through the transformation by
the expression:

x−xminð Þ
xmax−xminð Þ * max−minð Þ þmin

Where min, max are the defined feature ranges, x the current
value and xmin, xmax the minimum and maximum value in the
dataset respectively. Similarly, each independent variable y
was mapped to the range [0, 1].

Offline pressure prediction

In the case presented in the paper, where the target is a con-
tinuous variable, the mean squared error (MSE) is chosen as

the loss function to be minimized. MSE measures the average
square difference of the experimental (actual) value and the
value predicted by the ANN. Additionally, the non-linear ac-
tivation function σ for the input and hidden layers is selected
to be the Rectified Linear Unit (ReLU), with the final output
layer undergoing no transformation. ReLU converges rela-
tively fast and is efficient in multiplying gradients over mul-
tiple layers [27], which makes it one of the most widely used
non-linear activation functions for deep networks. The ex-
haustive search showed that the best performing model con-
sists of 3 hidden layers with 500, 250, and 150 neurons re-
spectively in each layer. Further hyperparameters are present-
ed in Table 5. To properly estimate the generalization error of
the learner, the dataset is split into three subsets, namely train-
ing (90%), validation (5%) and testing (5%). The test set is not
involved in training the learner, and is only called after train-
ing to estimate the true generalization error of the algorithms
as best as possible. The model is ultimately trained using the
listed hyperparameters 25 times, where the data is re-shuffled
for every replication, resulting in a different train / test split for
every run. The latter is performed to account for the stochastic
nature of neural networks. The average of these 25 runs for the
model trained on the extrapolated dataset is shown in
Table 6b. A different ANN model was trained on non-
extrapolated data and serves as a benchmark to compare the
results with (Table 6a). This model undergoes an exhaustive
search as well, which results in a different set of
hyperparameters to be used. Moreover, other machine learn-
ing models such as linear regression and polynomial regres-
sion were found to be less accurate, as depicted in Table 6c, d.
The models achieved satisfactory results across multiple per-
formance metrics, with model b outperforming its counter-
parts. The relatively high value of the coefficient of determi-
nation R2 = 0.984 achieved indicates that the model explains
the variance of p with respect to the input parameters suffi-
ciently well. The mean absolute error (MAE) presented for the
test set shows that on average, a prediction of a new pressure
point in the range of [0,1] deviates 0.018 bar from the real
value of said pressure point. Finally, it can be deduced from
Fig. 10 that model b is not overfit on the training data; the loss
(MSE) decrease for the training and validation sets is relative-
ly close, and the model can thus generalize its learning on
samples it has not come across before. Therefore, model b is
selected to be used in the following sections for controlling the
pressure levels.

Influence on geometrical accuracy

The geometrical accuracy consists of the height difference of
each cycle along with the final accumulated height. At first,
the development of the height difference during the
manufacturing process is analyzed for constant and dynami-
cally adjusted pressure, in Figs. 11 and 12 respectively.
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Ideally, the height difference Δha(i) should be 1.75 mm for
each cycle. If it is not the case, then the final height would
either be exceeded or not achieved. For the uncontrolled pro-
cess, the highest pressure levels from Table 1 which did not
lead to cracks were selected as constant setpoints. From
Fig. 11, it can be seen that the height difference starts of
smaller than the value of 1.75 mm for all parts. It increased
continuously to reach values exceeding 1.75 mm thereafter.
The height difference had also reached the critical value of
3 mm during the manufacturing of the large part. As for the
case where pressure was dynamically adjusted, it can be seen
in Fig. 12 that any deficit or excess of the height difference

was compensated by the controller. Furthermore, the control
concept helped prevent the height difference from exceeding
the critical value of 3 mm for all geometries.

The comparison of the final height for parts manufactured
using constant and dynamically adjusted pressure is shown in
Fig. 13, where the final contour was measured by a 3D-scan-
ner. In the case of constant pressure, the small and middle-
sized parts exceeded the target height value whereas the large
part remained well below it. Using dynamically adjusted pres-
sure, all parts underwent significant improvements in terms of
accuracy. It is also worth noting that the final height reached
was consistently slightly above the target height. This is
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caused by elastic bulging which occurs at the beginning of the
forming process along with springback at the end after

pressure release in the chamber. These phenomena lead to a
mismatch between the height measured by the laser sensor
and the height determined by the 3D-scanner. Ideally, this
mismatch can be compensated through adjustment of the ini-
tial height hoff according to the values in Table 7, which was
not performed for the experiments.

By controlling the product height ha(i), the wall angle α
was indirectly influenced. The wall angles α corresponding to
the cross sections of Fig. 13 are shown in Fig. 14. The wall
angle never remained at a constant value without the control
and also exceeded the target value of 60.26° defined in
Table 2. In contrast, the controlled process led to a wall angle
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Table 7 Elastic bulging prior to the first cycle and springback after
pressure release as average value for all geometries

Small (n = 10) Middle (n = 20) Large (n = 40)

Elastic bulging 3.2 mm 2.8 mm 2.6 mm

Springback −1.1 mm −1 mm −0.7 mm

∑ = 2.1 mm 1.8 mm 1. 9 mm
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which is more in agreement with the target value. Thus, con-
trolling the pressure can lead to more homogenous sheet thin-
ning in the part wall.

Conclusions

In this work, a strategy was implemented to control the final
part height in incremental sheet forming with active medium.
Experiments were conducted to form truncated cones of dif-
ferent geometries and generate a dataset that was used to train
an artificial neural network. Further data was created through
extrapolating the pressure-height values of the original
dataset. The neural network was part of a larger closed-loop
control, in which the pressure for each forming cycle is to be
predicted. The results were validated both through evaluating
the performance of the neural network on a separate test set
and through conducting experiments where the entire closed-
loop control was used to shape parts of different geometries.
Finally, the parts formed using the closed-loop control were
compared against uncontrolled parts manufactured using con-
stant pressure. The approach followed by the authors, includ-
ing conclusions drawn from the results are summarized as
follows:

& Controlling the process through dynamically adjusting the
pressure levels improves the geometrical accuracy. The
final height, the development of the height difference of
each cycle and the wall angle were all more in agreement
with the target values. Uncontrolled processes with con-
stant pressure were found to be less accurate.

& Both the elastic bulging which occurs prior to the process
start and the springback which occurs after the pressure is
released influence the final height of the part. They must
be therefore taken into consideration in order to achieve
the desired part height accurately.

& A combination of a uniform product height increase, a
homogeneous wall angle distribution and a regulated de-
crease of the pressure contributes to a more reliable
manufacturing process.

Furthermore, the approach followed in this work can be
applied to any different material, so long as sufficient experi-
ments are conducted and an adequate training dataset gener-
ated. In future work, the authors will look into further gener-
alizing the closed-loop control approach to be applicable for
different types of materials and geometries, such as for trun-
cated pyramids. The authors will therefore investigate the
minimum number of experiments required to be able to

H
ei

gh
t i

n 
m

m

X-Position in mm

80

60

40

20

0
80 60 40 20 0

X-Position in mm X-Position in mm
020406080 020406080

(a) (b) (c)

17
.5

H
ei

gh
t i

n 
m

m

35

70

Uncontrolled Controlled Target height

Fig. 13 Resulting product shape compared between the controlled case with automatically adjusted pressure and the uncontrolled case with constant
pressure: a small parts (n = 10), b middle-sized parts (n = 20) and c large parts (n = 40); photos show the controlled parts

W
al

l a
ng

le
in

 °
α

X-Position in mm

90

60

30

0

-30
80 60 40 20 0 80 60 40 20 080 60 40 20 0

X-Position in mm X-Position in mm

Uncontrolled
Controlled

Uncontrolled
Controlled

Uncontrolled
Controlled

(a) (b) (c)Fig. 14 Comparison of the wall
angleα between the uncontrolled
forming process and the
controlled forming process by
using ANN: a small part (n = 10),
bmiddle-sized part (n = 20) and c
large part (n = 40)

1333Int J Mater Form (2021) 14:1319–1335



control the process reliably. Moreover, the exhaustive grid
search which was used to find the best hyperparameters for
the neural network was found to be time consuming and as
such will be replaced by a method which converges faster, for
example Bayesian optimization.
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