Toward Automated Topology Optimization: Identification of Non-Design Features of CAD Models Using Graph Neural Networks
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
This paper presents an automated identification of non-design features of CAD models for topology optimization using learning-based segmentation. The CAD files are taken from a large database of industry-relevant components. Based on the geometry and topology of the components, a graph structure is created and processed by a deep neural network. The results show good match with real cases and can be continuously improved by training with additional data.
Originalsprache | Englisch |
---|---|
Titel | Industrializing Additive Manufacturing : Proceedings of AMPA2023 |
Herausgeber | Christoph Klahn, Mirko Meboldt, Julian Ferchow |
Anzahl der Seiten | 13 |
Erscheinungsort | Cham |
Verlag | Springer International Publishing AG |
Erscheinungsdatum | 2024 |
Seiten | 267-279 |
ISBN (Print) | 978-3-031-42982-8 |
ISBN (elektronisch) | 978-3-031-42983-5 |
DOIs | |
Publikationsstatus | Erschienen - 2024 |
Extern publiziert | Ja |
Veranstaltung | 3th International Conference on Additive Manufacturing in Products and Applications - AMPA 2023 - ETH Zürich, Zürich, Schweiz Dauer: 12.09.2023 → 14.09.2023 Konferenznummer: 3 https://ampa.ethz.ch/ |
Bibliographische Notiz
Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.
- Ingenieurwissenschaften