Toward Automated Topology Optimization: Identification of Non-Design Features of CAD Models Using Graph Neural Networks

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

This paper presents an automated identification of non-design features of CAD models for topology optimization using learning-based segmentation. The CAD files are taken from a large database of industry-relevant components. Based on the geometry and topology of the components, a graph structure is created and processed by a deep neural network. The results show good match with real cases and can be continuously improved by training with additional data.
OriginalspracheEnglisch
TitelIndustrializing Additive Manufacturing : Proceedings of AMPA2023
HerausgeberChristoph Klahn, Mirko Meboldt, Julian Ferchow
Anzahl der Seiten13
ErscheinungsortCham
VerlagSpringer International Publishing AG
Erscheinungsdatum2024
Seiten267-279
ISBN (Print)978-3-031-42982-8
ISBN (elektronisch)978-3-031-42983-5
DOIs
PublikationsstatusErschienen - 2024
Extern publiziertJa
Veranstaltung3th International Conference on Additive Manufacturing in Products and Applications - AMPA 2023 - ETH Zürich, Zürich, Schweiz
Dauer: 12.09.202314.09.2023
Konferenznummer: 3
https://ampa.ethz.ch/

Bibliographische Notiz

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.

DOI