Toward Automated Topology Optimization: Identification of Non-Design Features of CAD Models Using Graph Neural Networks

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Standard

Toward Automated Topology Optimization: Identification of Non-Design Features of CAD Models Using Graph Neural Networks. / Jasinski, Michael; Schöfer, Fabian; Seibel, Arthur.
Industrializing Additive Manufacturing: Proceedings of AMPA2023. Hrsg. / Christoph Klahn; Mirko Meboldt; Julian Ferchow. Cham: Springer International Publishing, 2024. S. 267-279 (Springer Tracts in Additive Manufacturing; Band Part F3256).

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Harvard

Jasinski, M, Schöfer, F & Seibel, A 2024, Toward Automated Topology Optimization: Identification of Non-Design Features of CAD Models Using Graph Neural Networks. in C Klahn, M Meboldt & J Ferchow (Hrsg.), Industrializing Additive Manufacturing: Proceedings of AMPA2023. Springer Tracts in Additive Manufacturing, Bd. Part F3256, Springer International Publishing, Cham, S. 267-279, 3th International Conference on Additive Manufacturing in Products and Applications - AMPA 2023, Zürich, Schweiz, 12.09.23. https://doi.org/10.1007/978-3-031-42983-5_19

APA

Jasinski, M., Schöfer, F., & Seibel, A. (2024). Toward Automated Topology Optimization: Identification of Non-Design Features of CAD Models Using Graph Neural Networks. In C. Klahn, M. Meboldt, & J. Ferchow (Hrsg.), Industrializing Additive Manufacturing: Proceedings of AMPA2023 (S. 267-279). (Springer Tracts in Additive Manufacturing; Band Part F3256). Springer International Publishing. https://doi.org/10.1007/978-3-031-42983-5_19

Vancouver

Jasinski M, Schöfer F, Seibel A. Toward Automated Topology Optimization: Identification of Non-Design Features of CAD Models Using Graph Neural Networks. in Klahn C, Meboldt M, Ferchow J, Hrsg., Industrializing Additive Manufacturing: Proceedings of AMPA2023. Cham: Springer International Publishing. 2024. S. 267-279. (Springer Tracts in Additive Manufacturing). doi: 10.1007/978-3-031-42983-5_19

Bibtex

@inbook{e5f9cdeb7fb4429184011b7bcdf3e611,
title = "Toward Automated Topology Optimization: Identification of Non-Design Features of CAD Models Using Graph Neural Networks",
abstract = "This paper presents an automated identification of non-design features of CAD models for topology optimization using learning-based segmentation. The CAD files are taken from a large database of industry-relevant components. Based on the geometry and topology of the components, a graph structure is created and processed by a deep neural network. The results show good match with real cases and can be continuously improved by training with additional data.",
keywords = "Engineering, Design Automation, Topology Optimization, Graph Neural Networks",
author = "Michael Jasinski and Fabian Sch{\"o}fer and Arthur Seibel",
note = "Publisher Copyright: {\textcopyright} The Author(s), under exclusive license to Springer Nature Switzerland AG 2024.; 3th International Conference on Additive Manufacturing in Products and Applications - AMPA 2023, AMPA 2023 ; Conference date: 12-09-2023 Through 14-09-2023",
year = "2024",
doi = "10.1007/978-3-031-42983-5_19",
language = "English",
isbn = "978-3-031-42982-8",
series = "Springer Tracts in Additive Manufacturing",
publisher = "Springer International Publishing",
pages = "267--279",
editor = "Christoph Klahn and Mirko Meboldt and Julian Ferchow",
booktitle = "Industrializing Additive Manufacturing",
address = "Switzerland",
url = "https://ampa.ethz.ch/",

}

RIS

TY - CHAP

T1 - Toward Automated Topology Optimization

T2 - 3th International Conference on Additive Manufacturing in Products and Applications - AMPA 2023

AU - Jasinski, Michael

AU - Schöfer, Fabian

AU - Seibel, Arthur

N1 - Conference code: 3

PY - 2024

Y1 - 2024

N2 - This paper presents an automated identification of non-design features of CAD models for topology optimization using learning-based segmentation. The CAD files are taken from a large database of industry-relevant components. Based on the geometry and topology of the components, a graph structure is created and processed by a deep neural network. The results show good match with real cases and can be continuously improved by training with additional data.

AB - This paper presents an automated identification of non-design features of CAD models for topology optimization using learning-based segmentation. The CAD files are taken from a large database of industry-relevant components. Based on the geometry and topology of the components, a graph structure is created and processed by a deep neural network. The results show good match with real cases and can be continuously improved by training with additional data.

KW - Engineering

KW - Design Automation

KW - Topology Optimization

KW - Graph Neural Networks

UR - http://www.scopus.com/inward/record.url?scp=85201294151&partnerID=8YFLogxK

U2 - 10.1007/978-3-031-42983-5_19

DO - 10.1007/978-3-031-42983-5_19

M3 - Article in conference proceedings

SN - 978-3-031-42982-8

T3 - Springer Tracts in Additive Manufacturing

SP - 267

EP - 279

BT - Industrializing Additive Manufacturing

A2 - Klahn, Christoph

A2 - Meboldt, Mirko

A2 - Ferchow, Julian

PB - Springer International Publishing

CY - Cham

Y2 - 12 September 2023 through 14 September 2023

ER -

DOI

Zuletzt angesehen

Forschende

  1. Iolanda Saviuc

Aktivitäten

  1. Transparency and Temporality: Benjamin’s Caesura
  2. Focusing Events and Changes in the Regulation of Labour Standards in Australian and German Garment Supply Chains
  3. North America's Pacific coastal rainforest under climate change: Deriving recommendations for conservation management from spatial modeling approaches
  4. Workshop des Wissenschaftsausschusses IPN.
  5. “Wither the side-effects of Digital ID: Citizenship was never meant to be convenient”
  6. The 18th Annual Meeting of the Organization for Human Brain Mapping - OHBM 2012
  7. O.K. Werckmeister und die kritische Kunstwissenschaft
  8. Leuphana Universität Lüneburg (Organisation)
  9. Fakultät Management und Technologie (Organisation)
  10. Leuphana Universität Lüneburg (Organisation)
  11. Fakultät Nachhaltigkeit (Organisation)
  12. Physikalisch-chemische Abwasserreinigung.
  13. Lehmanns Media (Verlag)
  14. Leuphana Universität Lüneburg (Organisation)
  15. 9. Intercultural Competence Conference - ICC 2024
  16. Fakultät Management und Technologie (Organisation)
  17. Graduate School (Organisation)
  18. (Hoch)Schulen als nachhaltige Konsumkulturen: Transdisziplinäre Innovationsforschung am Beispiel des Projektes BINK
  19. NumaRete would count no more! Von Wahrnehmungsmaschinen, biologischen Systemen und dem Vorführeffekt. (Hyperkult 16)
  20. "Gemein Sein": Der Sensus Communis der Medien
  21. Lehrerfortbildung 2008
  22. Elternbildungskurse im Vergleich
  23. 13. Österreichischer Klimatag 2012
  24. EMAN Conference on Environmental and Sustainability Management Accounting in collaboration with 22nd CSEAR International Congress on Social and Environmental Accounting Research 2004
  25. Musikalische Interface Designs (Poster)