Semi-Supervised Generative Models for Multi-Agent Trajectories

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

Analyzing the spatiotemporal behavior of multiple agents is of great interest to many communities. Existing probabilistic models in this realm are formalized either in an unsupervised framework, where the latent space is described by discrete or continuous variables, or in a supervised framework, where weakly preserved labels add explicit information to continuous latent representations. To overcome inherent limitations, we propose a novel objective function for processing multi-agent trajectories based on semi-supervised variational autoencoders, where equivariance and interaction of agents are captured via customized graph networks. The resulting architecture disentangles discrete and continuous latent effects and provides a natural solution for injecting expensive domain knowledge into interactive sequential systems. Empirically, our model not only outperforms various state-of-the-art baselines in trajectory forecasting, but also learns to effectively leverage unsupervised multi-agent sequences for classification tasks on interactive real-world sports datasets.

OriginalspracheEnglisch
TitelAdvances in Neural Information Processing Systems 35 : 36th Conference on Neural Information Processing Systems (NeurIPS 2022)
HerausgeberS. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, A. Oh
Anzahl der Seiten15
Band48
ErscheinungsortRed Hook
VerlagCurran Associates
Erscheinungsdatum2022
Seiten37267-37281
ISBN (Print)978-1-7138-7108-8
ISBN (elektronisch)978-1-7138-7312-9
PublikationsstatusErschienen - 2022
Veranstaltung36th Conference on Neural Information Processing Systems - NeurIPS 2022 - New Orleans Convention Center, New Orleans, USA / Vereinigte Staaten
Dauer: 28.11.202209.12.2022
Konferenznummer: 36
https://nips.cc/Conferences/2022

Bibliographische Notiz

Funding Information:
We would like to thank the German Football Association (DFB) for providing data for this study.

Publisher Copyright:
© 2022 Neural information processing systems foundation. All rights reserved.