Integrating the underlying structure of stochasticity into community ecology

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Integrating the underlying structure of stochasticity into community ecology. / Shoemaker, Lauren G.; Sullivan, Lauren L.; Donohue, Ian et al.
in: Ecology, Jahrgang 101, Nr. 2, e02922, 01.02.2020.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

Shoemaker, LG, Sullivan, LL, Donohue, I, Cabral, JS, Williams, RJ, Mayfield, MM, Chase, JM, Chu, C, Harpole, WS, Huth, A, HilleRisLambers, J, James, ARM, Kraft, NJB, May, F, Muthukrishnan, R, Satterlee, S, Taubert, F, Wang, X, Wiegand, T, Yang, Q & Abbott, KC 2020, 'Integrating the underlying structure of stochasticity into community ecology', Ecology, Jg. 101, Nr. 2, e02922. https://doi.org/10.1002/ecy.2922

APA

Shoemaker, L. G., Sullivan, L. L., Donohue, I., Cabral, J. S., Williams, R. J., Mayfield, M. M., Chase, J. M., Chu, C., Harpole, W. S., Huth, A., HilleRisLambers, J., James, A. R. M., Kraft, N. J. B., May, F., Muthukrishnan, R., Satterlee, S., Taubert, F., Wang, X., Wiegand, T., ... Abbott, K. C. (2020). Integrating the underlying structure of stochasticity into community ecology. Ecology, 101(2), Artikel e02922. https://doi.org/10.1002/ecy.2922

Vancouver

Shoemaker LG, Sullivan LL, Donohue I, Cabral JS, Williams RJ, Mayfield MM et al. Integrating the underlying structure of stochasticity into community ecology. Ecology. 2020 Feb 1;101(2):e02922. Epub 2019 Okt 25. doi: 10.1002/ecy.2922

Bibtex

@article{e1373f27eefc4f23bf16ed36a70eea97,
title = "Integrating the underlying structure of stochasticity into community ecology",
abstract = "Stochasticity is a core component of ecology, as it underlies key processes that structure and create variability in nature. Despite its fundamental importance in ecological systems, the concept is often treated as synonymous with unpredictability in community ecology, and studies tend to focus on single forms of stochasticity rather than taking a more holistic view. This has led to multiple narratives for how stochasticity mediates community dynamics. Here, we present a framework that describes how different forms of stochasticity (notably demographic and environmental stochasticity) combine to provide underlying and predictable structure in diverse communities. This framework builds on the deep ecological understanding of stochastic processes acting at individual and population levels and in modules of a few interacting species. We support our framework with a mathematical model that we use to synthesize key literature, demonstrating that stochasticity is more than simple uncertainty. Rather, stochasticity has profound and predictable effects on community dynamics that are critical for understanding how diversity is maintained. We propose next steps that ecologists might use to explore the role of stochasticity for structuring communities in theoretical and empirical systems, and thereby enhance our understanding of community dynamics.",
keywords = "autocorrelation, demographic stochasticity, distribution, diversity, environmental stochasticity, population dynamics, scale, uncertainty, Ecosystems Research, Environmental Governance",
author = "Shoemaker, {Lauren G.} and Sullivan, {Lauren L.} and Ian Donohue and Cabral, {Juliano S.} and Williams, {Ryan J.} and Mayfield, {Margaret M.} and Chase, {Jonathan M.} and Chengjin Chu and Harpole, {W. Stanley} and Andreas Huth and Janneke HilleRisLambers and James, {Aubrie R.M.} and Kraft, {Nathan J.B.} and Felix May and Ranjan Muthukrishnan and Sean Satterlee and Franziska Taubert and Xugao Wang and Thorsten Wiegand and Qiang Yang and Abbott, {Karen C.}",
note = "Publisher Copyright: {\textcopyright} 2019 The Authors. Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America",
year = "2020",
month = feb,
day = "1",
doi = "10.1002/ecy.2922",
language = "English",
volume = "101",
journal = "Ecology",
issn = "0012-9658",
publisher = "Wiley-Blackwell Publishing, Inc.",
number = "2",

}

RIS

TY - JOUR

T1 - Integrating the underlying structure of stochasticity into community ecology

AU - Shoemaker, Lauren G.

AU - Sullivan, Lauren L.

AU - Donohue, Ian

AU - Cabral, Juliano S.

AU - Williams, Ryan J.

AU - Mayfield, Margaret M.

AU - Chase, Jonathan M.

AU - Chu, Chengjin

AU - Harpole, W. Stanley

AU - Huth, Andreas

AU - HilleRisLambers, Janneke

AU - James, Aubrie R.M.

AU - Kraft, Nathan J.B.

AU - May, Felix

AU - Muthukrishnan, Ranjan

AU - Satterlee, Sean

AU - Taubert, Franziska

AU - Wang, Xugao

AU - Wiegand, Thorsten

AU - Yang, Qiang

AU - Abbott, Karen C.

N1 - Publisher Copyright: © 2019 The Authors. Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America

PY - 2020/2/1

Y1 - 2020/2/1

N2 - Stochasticity is a core component of ecology, as it underlies key processes that structure and create variability in nature. Despite its fundamental importance in ecological systems, the concept is often treated as synonymous with unpredictability in community ecology, and studies tend to focus on single forms of stochasticity rather than taking a more holistic view. This has led to multiple narratives for how stochasticity mediates community dynamics. Here, we present a framework that describes how different forms of stochasticity (notably demographic and environmental stochasticity) combine to provide underlying and predictable structure in diverse communities. This framework builds on the deep ecological understanding of stochastic processes acting at individual and population levels and in modules of a few interacting species. We support our framework with a mathematical model that we use to synthesize key literature, demonstrating that stochasticity is more than simple uncertainty. Rather, stochasticity has profound and predictable effects on community dynamics that are critical for understanding how diversity is maintained. We propose next steps that ecologists might use to explore the role of stochasticity for structuring communities in theoretical and empirical systems, and thereby enhance our understanding of community dynamics.

AB - Stochasticity is a core component of ecology, as it underlies key processes that structure and create variability in nature. Despite its fundamental importance in ecological systems, the concept is often treated as synonymous with unpredictability in community ecology, and studies tend to focus on single forms of stochasticity rather than taking a more holistic view. This has led to multiple narratives for how stochasticity mediates community dynamics. Here, we present a framework that describes how different forms of stochasticity (notably demographic and environmental stochasticity) combine to provide underlying and predictable structure in diverse communities. This framework builds on the deep ecological understanding of stochastic processes acting at individual and population levels and in modules of a few interacting species. We support our framework with a mathematical model that we use to synthesize key literature, demonstrating that stochasticity is more than simple uncertainty. Rather, stochasticity has profound and predictable effects on community dynamics that are critical for understanding how diversity is maintained. We propose next steps that ecologists might use to explore the role of stochasticity for structuring communities in theoretical and empirical systems, and thereby enhance our understanding of community dynamics.

KW - autocorrelation

KW - demographic stochasticity

KW - distribution

KW - diversity

KW - environmental stochasticity

KW - population dynamics

KW - scale

KW - uncertainty

KW - Ecosystems Research

KW - Environmental Governance

UR - http://www.scopus.com/inward/record.url?scp=85077182019&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/593ec78e-3700-3412-857d-ebd7eed62fa4/

U2 - 10.1002/ecy.2922

DO - 10.1002/ecy.2922

M3 - Journal articles

C2 - 31652337

AN - SCOPUS:85077182019

VL - 101

JO - Ecology

JF - Ecology

SN - 0012-9658

IS - 2

M1 - e02922

ER -

Dokumente

DOI

Zuletzt angesehen

Forschende

  1. Stefania Animento

Publikationen

  1. Memory Acts: Memory without Representation.
  2. Collaborative open science as a way to reproducibility and new insights in primate cognition research
  3. Host functional and phylogenetic composition rather than host diversity structure plant–herbivore networks
  4. When, Where, and How Nature Matters for Ecosystem Services
  5. Separable models for interconnected production-inventory systems
  6. A Geometric Approach by Using Switching and Flatness Based Control in Electromechanical Actuators for Linear Motion
  7. Active learning for network intrusion detection
  8. In situ synchrotron radiation diffraction investigation of the compression behaviour at 350 °C of ZK40 alloys with addition of CaO and Y
  9. Performance Saga: Interview 01
  10. Equivalence unbalanced-metaphor, case, and example-from Aristotle to Derrida
  11. How difficult is the adaptation of POS taggers?
  12. Comparison of different machine control modes during friction extrusion of AA2024
  13. Indicator model of students' writing skills (IMOSS)
  14. Comparison of Supervised versus Self-Administered Stretching on Bench Press Maximal Strength and Force Development
  15. The explanatory power of Carnegie Classification in predicting engagement indicators
  16. Examining how AI capabilities can foster organizational performance in public organizations
  17. Assessing pre-travel online destination experience values of destination websites
  18. Ruins of Excess
  19. Warm, lively, rough?
  20. Path dependence of accountants: Why are they not involved in corporate sustainability?
  21. Managing invasive species amidst high uncertainty and novelty
  22. Assessing the structure of UK environmental concern and its association with pro-environmental behaviour
  23. Towards a Deconstruction of the Screen
  24. A Fictional Risk Narrative and Its Potential for Social Resonance: Reception of Barbara Kingsolver’s Flight Behavior in Reviews and Reading Groups
  25. A modified epitope identified for generation and monitoring of PSA-specific T cells in patients on early phases of PSA-based immunotherapeutic protocols
  26. Effects of Chronic Static Stretching on Maximal Strength and Muscle Hypertrophy
  27. Architecture of an adaptive, human-centered assistance system
  28. Nachhaltigkeit 2.0