Integrating the underlying structure of stochasticity into community ecology

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Integrating the underlying structure of stochasticity into community ecology. / Shoemaker, Lauren G.; Sullivan, Lauren L.; Donohue, Ian et al.
in: Ecology, Jahrgang 101, Nr. 2, e02922, 01.02.2020.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

Shoemaker, LG, Sullivan, LL, Donohue, I, Cabral, JS, Williams, RJ, Mayfield, MM, Chase, JM, Chu, C, Harpole, WS, Huth, A, HilleRisLambers, J, James, ARM, Kraft, NJB, May, F, Muthukrishnan, R, Satterlee, S, Taubert, F, Wang, X, Wiegand, T, Yang, Q & Abbott, KC 2020, 'Integrating the underlying structure of stochasticity into community ecology', Ecology, Jg. 101, Nr. 2, e02922. https://doi.org/10.1002/ecy.2922

APA

Shoemaker, L. G., Sullivan, L. L., Donohue, I., Cabral, J. S., Williams, R. J., Mayfield, M. M., Chase, J. M., Chu, C., Harpole, W. S., Huth, A., HilleRisLambers, J., James, A. R. M., Kraft, N. J. B., May, F., Muthukrishnan, R., Satterlee, S., Taubert, F., Wang, X., Wiegand, T., ... Abbott, K. C. (2020). Integrating the underlying structure of stochasticity into community ecology. Ecology, 101(2), Artikel e02922. https://doi.org/10.1002/ecy.2922

Vancouver

Shoemaker LG, Sullivan LL, Donohue I, Cabral JS, Williams RJ, Mayfield MM et al. Integrating the underlying structure of stochasticity into community ecology. Ecology. 2020 Feb 1;101(2):e02922. Epub 2019 Okt 25. doi: 10.1002/ecy.2922

Bibtex

@article{e1373f27eefc4f23bf16ed36a70eea97,
title = "Integrating the underlying structure of stochasticity into community ecology",
abstract = "Stochasticity is a core component of ecology, as it underlies key processes that structure and create variability in nature. Despite its fundamental importance in ecological systems, the concept is often treated as synonymous with unpredictability in community ecology, and studies tend to focus on single forms of stochasticity rather than taking a more holistic view. This has led to multiple narratives for how stochasticity mediates community dynamics. Here, we present a framework that describes how different forms of stochasticity (notably demographic and environmental stochasticity) combine to provide underlying and predictable structure in diverse communities. This framework builds on the deep ecological understanding of stochastic processes acting at individual and population levels and in modules of a few interacting species. We support our framework with a mathematical model that we use to synthesize key literature, demonstrating that stochasticity is more than simple uncertainty. Rather, stochasticity has profound and predictable effects on community dynamics that are critical for understanding how diversity is maintained. We propose next steps that ecologists might use to explore the role of stochasticity for structuring communities in theoretical and empirical systems, and thereby enhance our understanding of community dynamics.",
keywords = "autocorrelation, demographic stochasticity, distribution, diversity, environmental stochasticity, population dynamics, scale, uncertainty, Ecosystems Research, Environmental Governance",
author = "Shoemaker, {Lauren G.} and Sullivan, {Lauren L.} and Ian Donohue and Cabral, {Juliano S.} and Williams, {Ryan J.} and Mayfield, {Margaret M.} and Chase, {Jonathan M.} and Chengjin Chu and Harpole, {W. Stanley} and Andreas Huth and Janneke HilleRisLambers and James, {Aubrie R.M.} and Kraft, {Nathan J.B.} and Felix May and Ranjan Muthukrishnan and Sean Satterlee and Franziska Taubert and Xugao Wang and Thorsten Wiegand and Qiang Yang and Abbott, {Karen C.}",
note = "Publisher Copyright: {\textcopyright} 2019 The Authors. Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America",
year = "2020",
month = feb,
day = "1",
doi = "10.1002/ecy.2922",
language = "English",
volume = "101",
journal = "Ecology",
issn = "0012-9658",
publisher = "Wiley-Blackwell Publishing, Inc.",
number = "2",

}

RIS

TY - JOUR

T1 - Integrating the underlying structure of stochasticity into community ecology

AU - Shoemaker, Lauren G.

AU - Sullivan, Lauren L.

AU - Donohue, Ian

AU - Cabral, Juliano S.

AU - Williams, Ryan J.

AU - Mayfield, Margaret M.

AU - Chase, Jonathan M.

AU - Chu, Chengjin

AU - Harpole, W. Stanley

AU - Huth, Andreas

AU - HilleRisLambers, Janneke

AU - James, Aubrie R.M.

AU - Kraft, Nathan J.B.

AU - May, Felix

AU - Muthukrishnan, Ranjan

AU - Satterlee, Sean

AU - Taubert, Franziska

AU - Wang, Xugao

AU - Wiegand, Thorsten

AU - Yang, Qiang

AU - Abbott, Karen C.

N1 - Publisher Copyright: © 2019 The Authors. Ecology published by Wiley Periodicals, Inc. on behalf of Ecological Society of America

PY - 2020/2/1

Y1 - 2020/2/1

N2 - Stochasticity is a core component of ecology, as it underlies key processes that structure and create variability in nature. Despite its fundamental importance in ecological systems, the concept is often treated as synonymous with unpredictability in community ecology, and studies tend to focus on single forms of stochasticity rather than taking a more holistic view. This has led to multiple narratives for how stochasticity mediates community dynamics. Here, we present a framework that describes how different forms of stochasticity (notably demographic and environmental stochasticity) combine to provide underlying and predictable structure in diverse communities. This framework builds on the deep ecological understanding of stochastic processes acting at individual and population levels and in modules of a few interacting species. We support our framework with a mathematical model that we use to synthesize key literature, demonstrating that stochasticity is more than simple uncertainty. Rather, stochasticity has profound and predictable effects on community dynamics that are critical for understanding how diversity is maintained. We propose next steps that ecologists might use to explore the role of stochasticity for structuring communities in theoretical and empirical systems, and thereby enhance our understanding of community dynamics.

AB - Stochasticity is a core component of ecology, as it underlies key processes that structure and create variability in nature. Despite its fundamental importance in ecological systems, the concept is often treated as synonymous with unpredictability in community ecology, and studies tend to focus on single forms of stochasticity rather than taking a more holistic view. This has led to multiple narratives for how stochasticity mediates community dynamics. Here, we present a framework that describes how different forms of stochasticity (notably demographic and environmental stochasticity) combine to provide underlying and predictable structure in diverse communities. This framework builds on the deep ecological understanding of stochastic processes acting at individual and population levels and in modules of a few interacting species. We support our framework with a mathematical model that we use to synthesize key literature, demonstrating that stochasticity is more than simple uncertainty. Rather, stochasticity has profound and predictable effects on community dynamics that are critical for understanding how diversity is maintained. We propose next steps that ecologists might use to explore the role of stochasticity for structuring communities in theoretical and empirical systems, and thereby enhance our understanding of community dynamics.

KW - autocorrelation

KW - demographic stochasticity

KW - distribution

KW - diversity

KW - environmental stochasticity

KW - population dynamics

KW - scale

KW - uncertainty

KW - Ecosystems Research

KW - Environmental Governance

UR - http://www.scopus.com/inward/record.url?scp=85077182019&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/593ec78e-3700-3412-857d-ebd7eed62fa4/

U2 - 10.1002/ecy.2922

DO - 10.1002/ecy.2922

M3 - Journal articles

C2 - 31652337

AN - SCOPUS:85077182019

VL - 101

JO - Ecology

JF - Ecology

SN - 0012-9658

IS - 2

M1 - e02922

ER -

Dokumente

DOI

Zuletzt angesehen

Publikationen

  1. A data-driven methodological routine to identify key indicators for social-ecological system archetype mapping
  2. Implementing aspects of inquiry-based learning in secondary chemistry classes: a case study
  3. Scaling-based Least Squares Methods with Implemented Kalman filter Approach for Nano-Parameters Identification
  4. Treating dialogue quality evaluation as an anomaly detection problem
  5. The impact of linguistic complexity on the solution of mathematical modelling tasks
  6. Competence models for assessing individual learning outcomes and evaluating educational processes - a priority program of the German research foundation (DFG)
  7. Digging into the roots
  8. Stimulating Computing
  9. Teachers’ temporary support and worked-out examples as elements of scaffolding in mathematical modeling
  10. The effect of structural complexity on large mammal occurrence in revegetation
  11. Artificial intelligence in songwriting and composing - perspectives and challenges in creative practices
  12. How to support teachers to give feedback to modelling tasks effectively? Results from a teacher-training-study in the Co²CA project
  13. A dialectical perspective on innovation: Conflicting demands, multiple pathways, and ambidexterity
  14. Self-supervised Siamese Autoencoders
  15. Value Orientations in the World of Visual Art: An Exploration Based on Latent Class and Correspondence Analysis
  16. Data based root cause analysis for improving logistic key performance indicators of a company’s internal supply chain
  17. Enterprise Architecture Management Support for Digital Transformation Projects in Very Large Enterprises
  18. Late developers and the inequity of "equitable utilization" and the harm of "do no harm"
  19. How attribution-of-competence and scale-granularity explain the anchor precision effect in negotiations and estimations.
  20. Mapping ecosystem services in Colombia
  21. Work availability types and well-being in Germany–a latent class analysis among a nationally representative sample
  22. Erratum: Formalised and non-formalised methods in resource management-knowledge and social learning in participatory processes
  23. The challenges of gamifying CSR communication
  24. Discriminative clustering for market segmentation
  25. Predicting online user behavior based on Real-Time Advertising Data
  26. 3D Simulation of Electric Arcing and Pressure increase in an Automotive HVDC Relay During a Short Circuit Situation
  27. Root-root interactions: extending our perspective to be more inclusive of the range of theories in ecology and agriculture using in-vivo analyses