Inflation Narratives from a Machine Learning Perspective
Publikation: Beiträge in Sammelwerken › Abstracts in Konferenzbänden › Forschung › begutachtet
Authors
Inflation narratives explain inflation changes and affect expectations. Manu- ally identifying them is cumbersome, prompting the need for scalable algo- rithms. Narratives comprise events, causal relations, and arguments, repre- sented as graphs with event and argument nodes. Causal relations indicate cause-and-effect relationships between events using directed edges. Our main objective is to extract narratives from text to enhance a knowledge graph for analysis like social network analysis or edge prediction. We address two sub- problems: event extraction, involving event type and argument identification, and event deduplication. Second, we extract causal relations as expressed by authors, not necessarily true causal links between events in the text.
| Originalsprache | Englisch |
|---|---|
| Titel | Digital Total - Computing & Data Science an der Universität Hamburg und in der Wissenschaftsmetropole Hamburg : Book of Abstracts |
| Herausgeber | Martin Semmann, Seid Muhie Yimam, Katrin Schöning-Stierand, Chris Biemann |
| Anzahl der Seiten | 1 |
| Erscheinungsort | Hamburg |
| Verlag | Universitat Hamburg |
| Erscheinungsdatum | 01.10.2023 |
| Seiten | 143 |
| Publikationsstatus | Erschienen - 01.10.2023 |
| Veranstaltung | Digital Total - Computing & Data Science an der Universität Hamburg und in der Wissenschaftsmetropole Hamburg - House of Computing and Data Science - University Hamburg, Hamburg , Deutschland Dauer: 09.10.2023 → 10.10.2023 https://www.hcds.uni-hamburg.de/current/all-events/digital-total.html |
- Informatik
