Inflation Narratives from a Machine Learning Perspective
Publikation: Beiträge in Sammelwerken › Abstracts in Konferenzbänden › Forschung › begutachtet
Authors
Inflation narratives explain inflation changes and affect expectations. Manu- ally identifying them is cumbersome, prompting the need for scalable algo- rithms. Narratives comprise events, causal relations, and arguments, repre- sented as graphs with event and argument nodes. Causal relations indicate cause-and-effect relationships between events using directed edges. Our main objective is to extract narratives from text to enhance a knowledge graph for analysis like social network analysis or edge prediction. We address two sub- problems: event extraction, involving event type and argument identification, and event deduplication. Second, we extract causal relations as expressed by authors, not necessarily true causal links between events in the text.
Originalsprache | Englisch |
---|---|
Titel | Digital Total - Computing & Data Science an der Universität Hamburg und in der Wissenschaftsmetropole Hamburg : Book of Abstracts |
Herausgeber | Martin Semmann, Seid Muhie Yimam, Katrin Schöning-Stierand, Chris Biemann |
Anzahl der Seiten | 1 |
Erscheinungsort | Hamburg |
Verlag | Universitat Hamburg |
Erscheinungsdatum | 01.10.2023 |
Seiten | 143 |
Publikationsstatus | Erschienen - 01.10.2023 |
Veranstaltung | Digital Total - Computing & Data Science an der Universität Hamburg und in der Wissenschaftsmetropole Hamburg - House of Computing and Data Science - University Hamburg, Hamburg , Deutschland Dauer: 09.10.2023 → 10.10.2023 https://www.hcds.uni-hamburg.de/current/all-events/digital-total.html |
- Informatik