How to Predict Mood? Delving into Features of Smartphone-Based Data

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

Smartphones are increasingly utilized in society and enable scientists to record a wide range of behavioral and environmental information. These information, referred to as Unobtrusive Ecological Momentary Assessment Data, might support prediction procedures regarding the mood level of users and simultaneously contribute to an enhancement of therapy strategies. In this paper, we analyze how the mood level of healthy clients is affected by unobtrusive measures and how this kind of data contributes to the prediction performance of various statistical models (Bayesian methods, Lasso procedures, etc.). We conduct analyses on a non-user and a user level. We then compare the models by utilizing introduced performance measures. Our findings indicate that the prediction performance increases when considering individual users. However, the implemented models only perform slightly better than the introduced mean model. Indicated by feature selection methods, we assume that more meaningful variables regarding the outcome can potentially increase prediction performance.
OriginalspracheEnglisch
TitelProceedings of the AMCIS 2016
Anzahl der Seiten10
VerlagAIS eLibrary
Erscheinungsdatum08.2016
ISBN (Print)978-0-9966831-2-8
ISBN (elektronisch)978-0-9966831-2-8
PublikationsstatusErschienen - 08.2016
VeranstaltungAmericas Conference on Information Systems - AMCIS 2016: Surfing the IT Innovation Wave - Sheraton San Diego Hotel and Marina, San Diego, USA / Vereinigte Staaten
Dauer: 11.08.201614.08.2016
Konferenznummer: 22
https://archives.aisconferences.org/amcis2016/