Feature selection for density level-sets

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

A frequent problem in density level-set estimation is the choice of the right features that give rise to compact and concise representations of the observed data. We present an efficient feature selection method for density level-set estimation where optimal kernel mixing coefficients and model parameters are determined simultaneously. Our approach generalizes one-class support vector machines and can be equivalently expressed as a semi-infinite linear program that can be solved with interleaved cutting plane algorithms. The experimental evaluation of the new method on network intrusion detection and object recognition tasks demonstrate that our approach not only attains competitive performance but also spares practitioners from a priori decisions on feature sets to be used.
OriginalspracheEnglisch
TitelLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
HerausgeberWray Buntine, Marko Grobelnik, Dunja Mladenic, John Shawe-Taylor
Anzahl der Seiten13
ErscheinungsortHeidelberg
VerlagSpringer
Erscheinungsdatum2009
Seiten692-704
ISBN (Print)978-3-642-04179-2
ISBN (elektronisch)978-3-642-04180-8
DOIs
PublikationsstatusErschienen - 2009
VeranstaltungEuropean Conference on Machine Learning and Knowledge Discovery in Databases - 2009 - Bled, Slowenien
Dauer: 07.09.200911.09.2009
https://www.k4all.org/event/european-conference-on-machine-learning-and-principles-and-practice-of-knowledge-discovery-in-databases/

DOI