Entity Linking with Out-of-Knowledge-Graph Entity Detection and Clustering Using Only Knowledge Graphs

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Standard

Entity Linking with Out-of-Knowledge-Graph Entity Detection and Clustering Using Only Knowledge Graphs. / Möller, Cedric; Usbeck, Ricardo.
Knowledge Graphs in the Age of Language Models and Neuro-Symbolic AI- : Proceedings of the 20th International Conference on Semantic Systems, 17-19 September 2024, Amsterdam, The Netherlands. Hrsg. / Angelo A. Salatino; Mehwish Alam; Femke Ongenae; Sahar Vahdati; Anna Lisa Gentile; Tassilo Pellegrini; Shufan Jiang. Amsterdam: IOS Press BV, 2024. S. 88-105 (Studies on the Semantic Web; Band 60).

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Harvard

Möller, C & Usbeck, R 2024, Entity Linking with Out-of-Knowledge-Graph Entity Detection and Clustering Using Only Knowledge Graphs. in AA Salatino, M Alam, F Ongenae, S Vahdati, AL Gentile, T Pellegrini & S Jiang (Hrsg.), Knowledge Graphs in the Age of Language Models and Neuro-Symbolic AI- : Proceedings of the 20th International Conference on Semantic Systems, 17-19 September 2024, Amsterdam, The Netherlands. Studies on the Semantic Web, Bd. 60, IOS Press BV, Amsterdam, S. 88-105, 20th International Conference on Semantic Systems - SEMANTiCS 2024, Amsterdam, Niederlande, 17.09.24. https://doi.org/10.3233/SSW240009

APA

Möller, C., & Usbeck, R. (2024). Entity Linking with Out-of-Knowledge-Graph Entity Detection and Clustering Using Only Knowledge Graphs. In A. A. Salatino, M. Alam, F. Ongenae, S. Vahdati, A. L. Gentile, T. Pellegrini, & S. Jiang (Hrsg.), Knowledge Graphs in the Age of Language Models and Neuro-Symbolic AI- : Proceedings of the 20th International Conference on Semantic Systems, 17-19 September 2024, Amsterdam, The Netherlands (S. 88-105). (Studies on the Semantic Web; Band 60). IOS Press BV. https://doi.org/10.3233/SSW240009

Vancouver

Möller C, Usbeck R. Entity Linking with Out-of-Knowledge-Graph Entity Detection and Clustering Using Only Knowledge Graphs. in Salatino AA, Alam M, Ongenae F, Vahdati S, Gentile AL, Pellegrini T, Jiang S, Hrsg., Knowledge Graphs in the Age of Language Models and Neuro-Symbolic AI- : Proceedings of the 20th International Conference on Semantic Systems, 17-19 September 2024, Amsterdam, The Netherlands. Amsterdam: IOS Press BV. 2024. S. 88-105. (Studies on the Semantic Web). doi: 10.3233/SSW240009

Bibtex

@inbook{0e3e0f1feb394832955e1c1aafac7b6d,
title = "Entity Linking with Out-of-Knowledge-Graph Entity Detection and Clustering Using Only Knowledge Graphs",
abstract = "Entity Linking is crucial for numerous downstream tasks, such as question answering, knowledge graph population, and general knowledge extraction. A frequently overlooked aspect of entity linking is the potential encounter with entities not yet present in a target knowledge graph. Although some recent studies have addressed this issue, they primarily utilize full-text knowledge bases or depend on external information such as crawled webpages. Full-text knowledge bases are not available in all domains and using external information is connected to increased effort. However, these resources are not available in most use cases. In this work, we solely rely on the information within a knowledge graph and assume no external information is accessible.To investigate the challenge of identifying and disambiguating entities absent from the knowledge graph, we introduce a comprehensive silver-standard benchmark dataset that covers texts from 1999 to 2022. Based on our novel dataset, we develop an approach using pre-trained language models and knowledge graph embeddings without the need for a parallel full-text corpus. Moreover, by assessing the influence of knowledge graph embeddings on the given task, we show that implementing a sequential entity linking approach, which considers the whole sentence, can outperform clustering techniques that handle each mention separately in specific instances.",
keywords = "Business informatics, Entity Linking, Entity Disambiguation, Out-of-KG Entities",
author = "Cedric M{\"o}ller and Ricardo Usbeck",
note = "{\textcopyright} 2024 The Authors; 20th International Conference on Semantic Systems - SEMANTiCS 2024 : Knowledge Graphs in the Age of Language Models and Neuro-Symbolic AI, SEMANTiCS 2024 ; Conference date: 17-09-2024 Through 19-09-2024",
year = "2024",
month = sep,
day = "11",
doi = "10.3233/SSW240009",
language = "English",
series = "Studies on the Semantic Web",
publisher = "IOS Press BV",
pages = "88--105",
editor = "Salatino, {Angelo A.} and Mehwish Alam and Femke Ongenae and Sahar Vahdati and Gentile, {Anna Lisa} and Tassilo Pellegrini and Shufan Jiang",
booktitle = "Knowledge Graphs in the Age of Language Models and Neuro-Symbolic AI-",
address = "Netherlands",
url = "https://2024-eu.semantics.cc/ ",

}

RIS

TY - CHAP

T1 - Entity Linking with Out-of-Knowledge-Graph Entity Detection and Clustering Using Only Knowledge Graphs

AU - Möller, Cedric

AU - Usbeck, Ricardo

N1 - Conference code: 20

PY - 2024/9/11

Y1 - 2024/9/11

N2 - Entity Linking is crucial for numerous downstream tasks, such as question answering, knowledge graph population, and general knowledge extraction. A frequently overlooked aspect of entity linking is the potential encounter with entities not yet present in a target knowledge graph. Although some recent studies have addressed this issue, they primarily utilize full-text knowledge bases or depend on external information such as crawled webpages. Full-text knowledge bases are not available in all domains and using external information is connected to increased effort. However, these resources are not available in most use cases. In this work, we solely rely on the information within a knowledge graph and assume no external information is accessible.To investigate the challenge of identifying and disambiguating entities absent from the knowledge graph, we introduce a comprehensive silver-standard benchmark dataset that covers texts from 1999 to 2022. Based on our novel dataset, we develop an approach using pre-trained language models and knowledge graph embeddings without the need for a parallel full-text corpus. Moreover, by assessing the influence of knowledge graph embeddings on the given task, we show that implementing a sequential entity linking approach, which considers the whole sentence, can outperform clustering techniques that handle each mention separately in specific instances.

AB - Entity Linking is crucial for numerous downstream tasks, such as question answering, knowledge graph population, and general knowledge extraction. A frequently overlooked aspect of entity linking is the potential encounter with entities not yet present in a target knowledge graph. Although some recent studies have addressed this issue, they primarily utilize full-text knowledge bases or depend on external information such as crawled webpages. Full-text knowledge bases are not available in all domains and using external information is connected to increased effort. However, these resources are not available in most use cases. In this work, we solely rely on the information within a knowledge graph and assume no external information is accessible.To investigate the challenge of identifying and disambiguating entities absent from the knowledge graph, we introduce a comprehensive silver-standard benchmark dataset that covers texts from 1999 to 2022. Based on our novel dataset, we develop an approach using pre-trained language models and knowledge graph embeddings without the need for a parallel full-text corpus. Moreover, by assessing the influence of knowledge graph embeddings on the given task, we show that implementing a sequential entity linking approach, which considers the whole sentence, can outperform clustering techniques that handle each mention separately in specific instances.

KW - Business informatics

KW - Entity Linking

KW - Entity Disambiguation

KW - Out-of-KG Entities

U2 - 10.3233/SSW240009

DO - 10.3233/SSW240009

M3 - Article in conference proceedings

T3 - Studies on the Semantic Web

SP - 88

EP - 105

BT - Knowledge Graphs in the Age of Language Models and Neuro-Symbolic AI-

A2 - Salatino, Angelo A.

A2 - Alam, Mehwish

A2 - Ongenae, Femke

A2 - Vahdati, Sahar

A2 - Gentile, Anna Lisa

A2 - Pellegrini, Tassilo

A2 - Jiang, Shufan

PB - IOS Press BV

CY - Amsterdam

T2 - 20th International Conference on Semantic Systems - SEMANTiCS 2024

Y2 - 17 September 2024 through 19 September 2024

ER -

DOI

Zuletzt angesehen

Publikationen

  1. Dynamic adjustment of dispatching rule parameters in flow shops with sequence-dependent set-up times
  2. Vision-Based Deep Learning Algorithm for Detecting Potholes
  3. Design of a Real Time Path of Motion Using a Sliding Mode Control with a Switching Surface
  4. A Python toolbox for the numerical solution of the Maxey-Riley equation
  5. Towards a Dynamic Interpretation of Subjective and Objective Values
  6. Using haar wavelets for fault detection in technical processes
  7. Analysis and Implementation of a Resistance Temperature Estimator Based on Bi-Polynomial Least Squares Method and Discrete Kalman Filter
  8. Inversion of fuzzy neural networks for the reduction of noise in the control loop
  9. Identification of structure-biodegradability relationships for ionic liquids - clustering of a dataset based on structural similarity
  10. Linux-based Embedded System for Wavelet Denoising and Monitoring of sEMG Signals using an Axiomatic Seminorm
  11. Applied quality assurance methods under the open source development model
  12. Real-time RDF extraction from unstructured data streams
  13. Analysis of PI controllers with anti-windup techniques on level systems
  14. Sliding-Mode-Based Input-Output Linearization of a Peltier Element for Ice Clamping Using a State and Disturbance Observer
  15. Approximate tree kernels
  16. Mathematical Modeling for Robot 3D Laser Scanning in Complete Darkness Environments to Advance Pipeline Inspection
  17. Application of design of experiments for laser shock peening process optimization
  18. Intraspecific trait variation increases species diversity in a trait-based grassland model
  19. Legitimizing Digital Transformation: From System Integration to Platformization
  20. Using data mining techniques to investigate the correlation between surface cracks and flange lengths in deep drawn sheet metals
  21. Quantification of amino acids in fermentation media by isocratic HPLC analysis of their
  22. Comparing temperature data sources for use in species distribution models
  23. Clashing Values
  24. Assessment of cognitive load in multimedia learning with dual-task methodology
  25. The Practical Significance of History: When and How History Can Be Used for Institutional Change
  26. Sliding Mode Control Strategies for Maglev Systems Based on Kalman Filtering
  27. Pluralism and diversity: Trends in the use and application of ordination methods 1990-2007
  28. Recontextualizing Anthropomorphic Metaphors in Organization Studies
  29. Individual Differences in Infants' Speech Segmentation Performance
  30. Efficacy of a web-based intervention with and without guidance for employees with risky drinking