Bridging the Gap: Generating a Comprehensive Biomedical Knowledge Graph Question Answering Dataset

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Standard

Bridging the Gap: Generating a Comprehensive Biomedical Knowledge Graph Question Answering Dataset. / Yan, Xi; Westphal, Patrick; Seliger, Jan et al.
ECAI 2024 : 27th European Conference on Artificial Intelligence, 19-24 October 2024, Santiago de Compostela, Spain; including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024), Proceedings. Hrsg. / Ulle Endriss; Francisco S. Melo; Kerstin Bach; Alberto José Bugarín Diz; Jose Maria Alonso-Moral; Senén Barro; Fredrik Heintz. Amsterdam: IOS Press BV, 2024. S. 1198-1205 (Frontiers in Artificial Intelligence and Applications; Band 392).

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Harvard

Yan, X, Westphal, P, Seliger, J & Usbeck, R 2024, Bridging the Gap: Generating a Comprehensive Biomedical Knowledge Graph Question Answering Dataset. in U Endriss, FS Melo, K Bach, AJB Diz, JM Alonso-Moral, S Barro & F Heintz (Hrsg.), ECAI 2024 : 27th European Conference on Artificial Intelligence, 19-24 October 2024, Santiago de Compostela, Spain; including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024), Proceedings. Frontiers in Artificial Intelligence and Applications, Bd. 392, IOS Press BV, Amsterdam, S. 1198-1205, 27th European Conference on Artificial Intelligence - ECAI 2024, Santiago de Compostela, Spanien, 19.10.24. https://doi.org/10.3233/FAIA240615

APA

Yan, X., Westphal, P., Seliger, J., & Usbeck, R. (2024). Bridging the Gap: Generating a Comprehensive Biomedical Knowledge Graph Question Answering Dataset. In U. Endriss, F. S. Melo, K. Bach, A. J. B. Diz, J. M. Alonso-Moral, S. Barro, & F. Heintz (Hrsg.), ECAI 2024 : 27th European Conference on Artificial Intelligence, 19-24 October 2024, Santiago de Compostela, Spain; including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024), Proceedings (S. 1198-1205). (Frontiers in Artificial Intelligence and Applications; Band 392). IOS Press BV. https://doi.org/10.3233/FAIA240615

Vancouver

Yan X, Westphal P, Seliger J, Usbeck R. Bridging the Gap: Generating a Comprehensive Biomedical Knowledge Graph Question Answering Dataset. in Endriss U, Melo FS, Bach K, Diz AJB, Alonso-Moral JM, Barro S, Heintz F, Hrsg., ECAI 2024 : 27th European Conference on Artificial Intelligence, 19-24 October 2024, Santiago de Compostela, Spain; including 13th Conference on Prestigious Applications of Intelligent Systems (PAIS 2024), Proceedings. Amsterdam: IOS Press BV. 2024. S. 1198-1205. (Frontiers in Artificial Intelligence and Applications). doi: 10.3233/FAIA240615

Bibtex

@inbook{41d62101511041df813ac0c8f77d9b15,
title = "Bridging the Gap: Generating a Comprehensive Biomedical Knowledge Graph Question Answering Dataset",
abstract = "Despite the plethora of resources such as large-scale corpora and manually curated Knowledge Graphs (KGs), the ability to perform reasoning with natural language inputs over biomedical graphs remains challenging due to insufficient training data. We propose a novel method for automatically constructing a Biomedical Knowledge Graph Question Answering (BioKGQA) dataset sourced from PrimeKG, the largest precision medicine-oriented KG. In total, we create 85,368 question-answer pairs along with their respective SPARQL queries. Our approach generates a diverse array of contextually relevant questions covering a wide spectrum of biomedical concepts and levels of complexity. We evaluate our method based on automatic metrics alongside manual annotations. We establish novel standards tailored for KGQA systems to highlight the linguistic correctness and semantical faithfulness of the generated questions based on extracted KG facts. The compiled dataset – PrimeKGQA – serves as a valuable benchmarking resource for advancing knowledge-driven biomedical research and evaluating KGQA systems.",
keywords = "Business informatics",
author = "Xi Yan and Patrick Westphal and Jan Seliger and Ricardo Usbeck",
note = "Publisher Copyright: {\textcopyright} 2024 The Authors.; 27th European Conference on Artificial Intelligence - ECAI 2024 : {"}Celebrating the past. Inspiring the future{"}, ECAI 2024 ; Conference date: 19-10-2024 Through 24-10-2024",
year = "2024",
month = oct,
day = "16",
doi = "10.3233/FAIA240615",
language = "English",
series = "Frontiers in Artificial Intelligence and Applications",
publisher = "IOS Press BV",
pages = "1198--1205",
editor = "Ulle Endriss and Melo, {Francisco S.} and Kerstin Bach and Diz, {Alberto Jos{\'e} Bugar{\'i}n} and Alonso-Moral, {Jose Maria} and Sen{\'e}n Barro and Fredrik Heintz",
booktitle = "ECAI 2024",
address = "Netherlands",
url = "https://www.ecai2024.eu/",

}

RIS

TY - CHAP

T1 - Bridging the Gap: Generating a Comprehensive Biomedical Knowledge Graph Question Answering Dataset

AU - Yan, Xi

AU - Westphal, Patrick

AU - Seliger, Jan

AU - Usbeck, Ricardo

N1 - Conference code: 27

PY - 2024/10/16

Y1 - 2024/10/16

N2 - Despite the plethora of resources such as large-scale corpora and manually curated Knowledge Graphs (KGs), the ability to perform reasoning with natural language inputs over biomedical graphs remains challenging due to insufficient training data. We propose a novel method for automatically constructing a Biomedical Knowledge Graph Question Answering (BioKGQA) dataset sourced from PrimeKG, the largest precision medicine-oriented KG. In total, we create 85,368 question-answer pairs along with their respective SPARQL queries. Our approach generates a diverse array of contextually relevant questions covering a wide spectrum of biomedical concepts and levels of complexity. We evaluate our method based on automatic metrics alongside manual annotations. We establish novel standards tailored for KGQA systems to highlight the linguistic correctness and semantical faithfulness of the generated questions based on extracted KG facts. The compiled dataset – PrimeKGQA – serves as a valuable benchmarking resource for advancing knowledge-driven biomedical research and evaluating KGQA systems.

AB - Despite the plethora of resources such as large-scale corpora and manually curated Knowledge Graphs (KGs), the ability to perform reasoning with natural language inputs over biomedical graphs remains challenging due to insufficient training data. We propose a novel method for automatically constructing a Biomedical Knowledge Graph Question Answering (BioKGQA) dataset sourced from PrimeKG, the largest precision medicine-oriented KG. In total, we create 85,368 question-answer pairs along with their respective SPARQL queries. Our approach generates a diverse array of contextually relevant questions covering a wide spectrum of biomedical concepts and levels of complexity. We evaluate our method based on automatic metrics alongside manual annotations. We establish novel standards tailored for KGQA systems to highlight the linguistic correctness and semantical faithfulness of the generated questions based on extracted KG facts. The compiled dataset – PrimeKGQA – serves as a valuable benchmarking resource for advancing knowledge-driven biomedical research and evaluating KGQA systems.

KW - Business informatics

UR - http://www.scopus.com/inward/record.url?scp=85213378742&partnerID=8YFLogxK

U2 - 10.3233/FAIA240615

DO - 10.3233/FAIA240615

M3 - Article in conference proceedings

T3 - Frontiers in Artificial Intelligence and Applications

SP - 1198

EP - 1205

BT - ECAI 2024

A2 - Endriss, Ulle

A2 - Melo, Francisco S.

A2 - Bach, Kerstin

A2 - Diz, Alberto José Bugarín

A2 - Alonso-Moral, Jose Maria

A2 - Barro, Senén

A2 - Heintz, Fredrik

PB - IOS Press BV

CY - Amsterdam

T2 - 27th European Conference on Artificial Intelligence - ECAI 2024

Y2 - 19 October 2024 through 24 October 2024

ER -

DOI

Zuletzt angesehen

Publikationen

  1. Missing links
  2. Application of design of experiments for laser shock peening process optimization
  3. On the Difficulty of Forgetting
  4. A slow-fast trait continuum at the whole community level in relation to land-use intensification
  5. Measurement in Machine Vision Editorial Paper
  6. Hacking the Classroom
  7. Knowledge Spaces of Globalization
  8. Relevance of the Basset history term for Lagrangian particle dynamics
  9. Influence of measurement errors on networks
  10. A geometric approach for the model parameter estimation in a permanent magnet synchronous motor
  11. Emotion Prediction by Facial Expressions in Human-Computer Interfaces
  12. Using latent class analysis to produce a typology of environmental concern in the UK
  13. Ablation Study of a Multimodal Gat Network on Perfect Synthetic and Real-world Data to Investigate the Influence of Language Models in Invoice Recognition
  14. Implementation of Chemometric Tools to Improve Data Mining and Prioritization in LC-HRMS for Nontarget Screening of Organic Micropollutants in Complex Water Matrixes
  15. Theory-based course design for professional master's degree program in business engineering
  16. Value of semi-open corridors for simultaneously connecting open and wooded habitats
  17. Covert and overt automatic imitation are correlated
  18. Grounds different from, though equally solid with
  19. Solvable problems or problematic solvability?
  20. Using Reading Strategy Training to Foster Students´ Mathematical Modelling Competencies
  21. Evaluating the (cost-)effectiveness of guided and unguided Internet-based self-help for problematic alcohol use in employees
  22. The Use of Anti-Windup Techniques in Didactic Level Systems
  23. Data quality assessment framework for critical raw materials. The case of cobalt
  24. Taming a Wicked Problem
  25. Predicting recurrent chat contact in a psychological intervention for the youth using natural language processing
  26. Spatio-Temporal Convolution Kernels
  27. Predicting the future performance of soccer players
  28. Response of saproxylic beetles to small-scale habitat connectivity depends on trophic levels
  29. The too-much-precision effect: When and why precise anchors backfire with experts
  30. Infinite Mixtures of Markov Chains
  31. Construal level theory
  32. Method of Artificial Vision in Guide Cane for Visually Impaired People
  33. Empowered or informed? Seeking to mitigate gender differences in first-offer assertiveness through pre-negotiation interventions
  34. Enhancing the transformative potential of interventions for the sustainable use of natural resources
  35. Harnessing place attachment for local climate mitigation?
  36. Estimation of minimal data sets sizes for machine learning predictions in digital mental health interventions
  37. A web- And mobile-based intervention for comorbid, recurrent depression in patients with chronic back pain on sick leave (get.back)
  38. Negotiating boundaries through reality shows
  39. Giving is a question of time: response times and contributions to an environmental public good
  40. The effect of complacency potential on human operators’ monitoring behavior in aviation
  41. Communicating change, transition, and transformation for adaptation in agriculture: a comparative analysis of climate change communication in Aotearoa New Zealand.
  42. Predictive modeling in e-mental health
  43. Reduction of capital tie up for assembly processes

Presse / Medien

  1. Weihnachtsfeiern