Personalized Transaction Kernels for Recommendation Using MCTS

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Standard

Personalized Transaction Kernels for Recommendation Using MCTS. / Tavakol, Maryam; Joppen, Tobias; Brefeld, Ulf et al.
KI 2019: Advances in Artificial Intelligence - 42nd German Conference on AI, Proceedings. ed. / Christoph Benzmüller; Heiner Stuckenschmidt. Wiesbaden: Springer Verlag, 2019. p. 338-352 (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11793 LNAI).

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Harvard

Tavakol, M, Joppen, T, Brefeld, U & Fürnkranz, J 2019, Personalized Transaction Kernels for Recommendation Using MCTS. in C Benzmüller & H Stuckenschmidt (eds), KI 2019: Advances in Artificial Intelligence - 42nd German Conference on AI, Proceedings. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), vol. 11793 LNAI, Springer Verlag, Wiesbaden, pp. 338-352, German Conference on Artificial Intelligence, KI 2019, Kassel, Germany, 23.09.19. https://doi.org/10.1007/978-3-030-30179-8_31

APA

Tavakol, M., Joppen, T., Brefeld, U., & Fürnkranz, J. (2019). Personalized Transaction Kernels for Recommendation Using MCTS. In C. Benzmüller, & H. Stuckenschmidt (Eds.), KI 2019: Advances in Artificial Intelligence - 42nd German Conference on AI, Proceedings (pp. 338-352). (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Vol. 11793 LNAI). Springer Verlag. https://doi.org/10.1007/978-3-030-30179-8_31

Vancouver

Tavakol M, Joppen T, Brefeld U, Fürnkranz J. Personalized Transaction Kernels for Recommendation Using MCTS. In Benzmüller C, Stuckenschmidt H, editors, KI 2019: Advances in Artificial Intelligence - 42nd German Conference on AI, Proceedings. Wiesbaden: Springer Verlag. 2019. p. 338-352. (Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)). doi: 10.1007/978-3-030-30179-8_31

Bibtex

@inbook{55552a254a764340833cde48964c51c8,
title = "Personalized Transaction Kernels for Recommendation Using MCTS",
abstract = "We study pairwise preference data to model the behavior of users in online recommendation problems. We first propose a tensor kernel to model contextual transactions of a user in a joint feature space. The representation is extended to all users via hash functions that allow to effectively store and retrieve personalized slices of data and context. In order to quickly focus on the relevant properties of the next item to display, we propose the use of Monte-Carlo tree search on the learned preference values. Empirically, on real-world transaction data, both the preference models as well as the search tree exhibit excellent performance over baseline approaches.",
keywords = "MCTS, Personalization, Preference learning, Tensor kernel, Business informatics",
author = "Maryam Tavakol and Tobias Joppen and Ulf Brefeld and Johannes F{\"u}rnkranz",
year = "2019",
month = sep,
day = "1",
doi = "10.1007/978-3-030-30179-8_31",
language = "English",
isbn = "978-3-030-30178-1",
series = "Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)",
publisher = "Springer Verlag",
pages = "338--352",
editor = "Christoph Benzm{\"u}ller and Heiner Stuckenschmidt",
booktitle = "KI 2019",
address = "Germany",
note = "German Conference on Artificial Intelligence, KI 2019, KI ; Conference date: 23-09-2019 Through 26-09-2019",
url = "https://www.ki2019.de/",

}

RIS

TY - CHAP

T1 - Personalized Transaction Kernels for Recommendation Using MCTS

AU - Tavakol, Maryam

AU - Joppen, Tobias

AU - Brefeld, Ulf

AU - Fürnkranz, Johannes

N1 - Conference code: 42

PY - 2019/9/1

Y1 - 2019/9/1

N2 - We study pairwise preference data to model the behavior of users in online recommendation problems. We first propose a tensor kernel to model contextual transactions of a user in a joint feature space. The representation is extended to all users via hash functions that allow to effectively store and retrieve personalized slices of data and context. In order to quickly focus on the relevant properties of the next item to display, we propose the use of Monte-Carlo tree search on the learned preference values. Empirically, on real-world transaction data, both the preference models as well as the search tree exhibit excellent performance over baseline approaches.

AB - We study pairwise preference data to model the behavior of users in online recommendation problems. We first propose a tensor kernel to model contextual transactions of a user in a joint feature space. The representation is extended to all users via hash functions that allow to effectively store and retrieve personalized slices of data and context. In order to quickly focus on the relevant properties of the next item to display, we propose the use of Monte-Carlo tree search on the learned preference values. Empirically, on real-world transaction data, both the preference models as well as the search tree exhibit excellent performance over baseline approaches.

KW - MCTS

KW - Personalization

KW - Preference learning

KW - Tensor kernel

KW - Business informatics

UR - http://www.scopus.com/inward/record.url?scp=85072855644&partnerID=8YFLogxK

U2 - 10.1007/978-3-030-30179-8_31

DO - 10.1007/978-3-030-30179-8_31

M3 - Article in conference proceedings

AN - SCOPUS:85072855644

SN - 978-3-030-30178-1

T3 - Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

SP - 338

EP - 352

BT - KI 2019

A2 - Benzmüller, Christoph

A2 - Stuckenschmidt, Heiner

PB - Springer Verlag

CY - Wiesbaden

T2 - German Conference on Artificial Intelligence, KI 2019

Y2 - 23 September 2019 through 26 September 2019

ER -

Recently viewed

Publications

  1. Multibody simulations of distributed flight arrays for Industry 4.0 applications
  2. Introduction
  3. Towards a Heuristic for Scheduling Offshore Installation Processes
  4. Score-Informed Analysis of Tuning, Intonation, Pitch Modulation, and Dynamics in Jazz Solos
  5. Assessment of occupational exertion and strain in laboratory- and real occupational environments
  6. Online Network Impedance Identification with Wave-Package and Inter-Harmonic Signals
  7. Managing the grazing landscape
  8. War isn't hell, it's entertainment
  9. Considerations on establishing prevention reporting at the national level in Germany
  10. Der Medienmanager - Unternehmer im Unternehmen
  11. The impact of digital transformation on the retailing value chain
  12. Credit constraints and margins of import
  13. Tailoring of residual stresses by specific use of defined prestress during laser shock peening
  14. Visualizers versus verbalizers
  15. Erich und die Übersetzer
  16. Multi-use of Community Energy Storage
  17. Chemistry of POPs in the Atmosphere
  18. Wir sind ihr
  19. 'Climate neutral' is a lie - abandon it as a goal
  20. Investigation On The Influence Of Remanufacturing On Production Planning And Control – A Systematic Literature Review
  21. Mythos als Aufklärung
  22. Branding the campus
  23. Community resilience for a 1.5 degrees C world
  24. What do we do with "other" music?
  25. Low species diversity in beech forest
  26. Emotional design and positive emotions in multimedia learning
  27. Programa de Maestría Internacional ‘Sustainable Development and Management’
  28. Effectiveness and cost-effectiveness of a guided internet- and mobile-based depression intervention for individuals with chronic back pain
  29. Topophilie