Non-native Douglas fir promotes epigeal spider density, but has a mixed effect on functional diversity
Research output: Journal contributions › Journal articles › Research › peer-review
Standard
In: Biodiversity and Conservation, Vol. 32, No. 4, 03.2023, p. 1233-1250.
Research output: Journal contributions › Journal articles › Research › peer-review
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - JOUR
T1 - Non-native Douglas fir promotes epigeal spider density, but has a mixed effect on functional diversity
AU - Matevski, Dragan
AU - Schuldt, Andreas
N1 - Funding Information: D.M. acknowledges funding by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) – 316045089/GRK2300. Publisher Copyright: © 2023, The Author(s).
PY - 2023/3
Y1 - 2023/3
N2 - With climate change altering ecosystems worldwide, forest management in Europe is increasingly relying on more adaptable non-native tree species, such as Douglas fir (Pseudotsuga menziesii). However, the ecological consequences of the increased utilization of Douglas fir on arthropod diversity and ecosystem functioning are not fully known. Here we assessed how non-native Douglas fir as well as large- and small-scale differences in the environmental context, affect epigeal spider abundance, biomass, taxonomic and functional diversity, and community structure in Central European forests. Our study sites were divided into two regions with large differences in environmental conditions, with seven replicates of five stand types, including monocultures of native European beech (Fagus sylvatica), non-native Douglas fir and native Norway spruce (Picea abies), as well as two-species mixtures of European beech and each of the conifers. Contrary to our expectations, Douglas fir promoted small-scale spider diversity, and abundance and biomass (activity density). On the other hand, it decreased spider functional divergence and altered spider community structure. Microhabitat characteristics had opposing effects on spider diversity and activity density, with more open stands harboring a more diverse but less abundant spider community. Overall, our findings suggest that increasing Douglas fir utilization at the expense of Norway spruce does not necessarily decrease the diversity of epigeal arthropods and may even promote local spider diversity and activity density. However, care needs to be taken in terms of biodiversity conservation because typical forest spider species and their functional divergence were more strongly associated with native beech than with coniferous stands.
AB - With climate change altering ecosystems worldwide, forest management in Europe is increasingly relying on more adaptable non-native tree species, such as Douglas fir (Pseudotsuga menziesii). However, the ecological consequences of the increased utilization of Douglas fir on arthropod diversity and ecosystem functioning are not fully known. Here we assessed how non-native Douglas fir as well as large- and small-scale differences in the environmental context, affect epigeal spider abundance, biomass, taxonomic and functional diversity, and community structure in Central European forests. Our study sites were divided into two regions with large differences in environmental conditions, with seven replicates of five stand types, including monocultures of native European beech (Fagus sylvatica), non-native Douglas fir and native Norway spruce (Picea abies), as well as two-species mixtures of European beech and each of the conifers. Contrary to our expectations, Douglas fir promoted small-scale spider diversity, and abundance and biomass (activity density). On the other hand, it decreased spider functional divergence and altered spider community structure. Microhabitat characteristics had opposing effects on spider diversity and activity density, with more open stands harboring a more diverse but less abundant spider community. Overall, our findings suggest that increasing Douglas fir utilization at the expense of Norway spruce does not necessarily decrease the diversity of epigeal arthropods and may even promote local spider diversity and activity density. However, care needs to be taken in terms of biodiversity conservation because typical forest spider species and their functional divergence were more strongly associated with native beech than with coniferous stands.
KW - Community structure
KW - Forest specialists
KW - Microhabitat variability
KW - Mixed-species forestry
KW - Pseudotsuga menziesii
KW - Top-down control
UR - http://www.scopus.com/inward/record.url?scp=85147758448&partnerID=8YFLogxK
U2 - 10.1007/s10531-023-02547-5
DO - 10.1007/s10531-023-02547-5
M3 - Journal articles
AN - SCOPUS:85147758448
VL - 32
SP - 1233
EP - 1250
JO - Biodiversity and Conservation
JF - Biodiversity and Conservation
SN - 0960-3115
IS - 4
ER -