From pre-processing to advanced dynamic modeling of pupil data

Research output: Journal contributionsJournal articlesResearchpeer-review

Standard

From pre-processing to advanced dynamic modeling of pupil data. / Fink, Lauren; Simola, Jaana; Tavano, Alessandro et al.
In: Behavior Research Methods, Vol. 56, No. 3, 03.2024, p. 1376-1412.

Research output: Journal contributionsJournal articlesResearchpeer-review

Harvard

Fink, L, Simola, J, Tavano, A, Lange, E, Wallot, S & Laeng, B 2024, 'From pre-processing to advanced dynamic modeling of pupil data', Behavior Research Methods, vol. 56, no. 3, pp. 1376-1412. https://doi.org/10.3758/s13428-023-02098-1

APA

Vancouver

Fink L, Simola J, Tavano A, Lange E, Wallot S, Laeng B. From pre-processing to advanced dynamic modeling of pupil data. Behavior Research Methods. 2024 Mar;56(3):1376-1412. doi: 10.3758/s13428-023-02098-1

Bibtex

@article{9b8dd21bf89f46b3a8396a629e9aa046,
title = "From pre-processing to advanced dynamic modeling of pupil data",
abstract = "The pupil of the eye provides a rich source of information for cognitive scientists, as it can index a variety of bodily states (e.g., arousal, fatigue) and cognitive processes (e.g., attention, decision-making). As pupillometry becomes a more accessible and popular methodology, researchers have proposed a variety of techniques for analyzing pupil data. Here, we focus on time series-based, signal-to-signal approaches that enable one to relate dynamic changes in pupil size over time with dynamic changes in a stimulus time series, continuous behavioral outcome measures, or other participants{\textquoteright} pupil traces. We first introduce pupillometry, its neural underpinnings, and the relation between pupil measurements and other oculomotor behaviors (e.g., blinks, saccades), to stress the importance of understanding what is being measured and what can be inferred from changes in pupillary activity. Next, we discuss possible pre-processing steps, and the contexts in which they may be necessary. Finally, we turn to signal-to-signal analytic techniques, including regression-based approaches, dynamic time-warping, phase clustering, detrended fluctuation analysis, and recurrence quantification analysis. Assumptions of these techniques, and examples of the scientific questions each can address, are outlined, with references to key papers and software packages. Additionally, we provide a detailed code tutorial that steps through the key examples and figures in this paper. Ultimately, we contend that the insights gained from pupillometry are constrained by the analysis techniques used, and that signal-to-signal approaches offer a means to generate novel scientific insights by taking into account understudied spectro-temporal relationships between the pupil signal and other signals of interest.",
keywords = "Convolution, Correlation, Phase coherence, Recurrence, Regression, Scale-free dynamics, Psychology",
author = "Lauren Fink and Jaana Simola and Alessandro Tavano and Elke Lange and Sebastian Wallot and Bruno Laeng",
note = "Funding Information: Open Access funding enabled and organized by Projekt DEAL. This project is supported by the Max Planck Society, Germany. SW acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 397523278 and 442405919. Publisher Copyright: {\textcopyright} The Author(s) 2023.",
year = "2024",
month = mar,
doi = "10.3758/s13428-023-02098-1",
language = "English",
volume = "56",
pages = "1376--1412",
journal = "Behavior Research Methods",
issn = "1554-351X",
publisher = "Springer Nature",
number = "3",

}

RIS

TY - JOUR

T1 - From pre-processing to advanced dynamic modeling of pupil data

AU - Fink, Lauren

AU - Simola, Jaana

AU - Tavano, Alessandro

AU - Lange, Elke

AU - Wallot, Sebastian

AU - Laeng, Bruno

N1 - Funding Information: Open Access funding enabled and organized by Projekt DEAL. This project is supported by the Max Planck Society, Germany. SW acknowledges support from the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation), project numbers 397523278 and 442405919. Publisher Copyright: © The Author(s) 2023.

PY - 2024/3

Y1 - 2024/3

N2 - The pupil of the eye provides a rich source of information for cognitive scientists, as it can index a variety of bodily states (e.g., arousal, fatigue) and cognitive processes (e.g., attention, decision-making). As pupillometry becomes a more accessible and popular methodology, researchers have proposed a variety of techniques for analyzing pupil data. Here, we focus on time series-based, signal-to-signal approaches that enable one to relate dynamic changes in pupil size over time with dynamic changes in a stimulus time series, continuous behavioral outcome measures, or other participants’ pupil traces. We first introduce pupillometry, its neural underpinnings, and the relation between pupil measurements and other oculomotor behaviors (e.g., blinks, saccades), to stress the importance of understanding what is being measured and what can be inferred from changes in pupillary activity. Next, we discuss possible pre-processing steps, and the contexts in which they may be necessary. Finally, we turn to signal-to-signal analytic techniques, including regression-based approaches, dynamic time-warping, phase clustering, detrended fluctuation analysis, and recurrence quantification analysis. Assumptions of these techniques, and examples of the scientific questions each can address, are outlined, with references to key papers and software packages. Additionally, we provide a detailed code tutorial that steps through the key examples and figures in this paper. Ultimately, we contend that the insights gained from pupillometry are constrained by the analysis techniques used, and that signal-to-signal approaches offer a means to generate novel scientific insights by taking into account understudied spectro-temporal relationships between the pupil signal and other signals of interest.

AB - The pupil of the eye provides a rich source of information for cognitive scientists, as it can index a variety of bodily states (e.g., arousal, fatigue) and cognitive processes (e.g., attention, decision-making). As pupillometry becomes a more accessible and popular methodology, researchers have proposed a variety of techniques for analyzing pupil data. Here, we focus on time series-based, signal-to-signal approaches that enable one to relate dynamic changes in pupil size over time with dynamic changes in a stimulus time series, continuous behavioral outcome measures, or other participants’ pupil traces. We first introduce pupillometry, its neural underpinnings, and the relation between pupil measurements and other oculomotor behaviors (e.g., blinks, saccades), to stress the importance of understanding what is being measured and what can be inferred from changes in pupillary activity. Next, we discuss possible pre-processing steps, and the contexts in which they may be necessary. Finally, we turn to signal-to-signal analytic techniques, including regression-based approaches, dynamic time-warping, phase clustering, detrended fluctuation analysis, and recurrence quantification analysis. Assumptions of these techniques, and examples of the scientific questions each can address, are outlined, with references to key papers and software packages. Additionally, we provide a detailed code tutorial that steps through the key examples and figures in this paper. Ultimately, we contend that the insights gained from pupillometry are constrained by the analysis techniques used, and that signal-to-signal approaches offer a means to generate novel scientific insights by taking into account understudied spectro-temporal relationships between the pupil signal and other signals of interest.

KW - Convolution

KW - Correlation

KW - Phase coherence

KW - Recurrence

KW - Regression

KW - Scale-free dynamics

KW - Psychology

UR - http://www.scopus.com/inward/record.url?scp=85163196837&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/19106a41-a8ae-3c7b-ad5b-9ea195cc3986/

U2 - 10.3758/s13428-023-02098-1

DO - 10.3758/s13428-023-02098-1

M3 - Journal articles

C2 - 37351785

AN - SCOPUS:85163196837

VL - 56

SP - 1376

EP - 1412

JO - Behavior Research Methods

JF - Behavior Research Methods

SN - 1554-351X

IS - 3

ER -

Recently viewed

Publications

  1. A Lyapunov based PI controller with an anti-windup scheme for a purification process of potable water
  2. Age effects on controlling tools with sensorimotor transformations
  3. A Study on the Performance of Adaptive Neural Networks for Haze Reduction with a Focus on Precision
  4. Towards an Interoperable Ecosystem of AI and LT Platforms: A Roadmap for the Implementation of Different Levels of Interoperability
  5. A PHENOMENOGRAPHICAL STUDY OF CHILDRENS’ SPATIAL THOUGHT WHILE USING MAPS IN REAL SPACES
  6. Practice and carryover effects when using small interaction devices
  7. Machine Learning and Knowledge Discovery in Databases
  8. Evaluating structural and compositional canopy characteristics to predict the light-demand signature of the forest understorey in mixed, semi-natural temperate forests
  9. A cascade controller structure using an internal PID controller for a hybrid piezo-hydraulic actuator in camless internal combustion engines
  10. Continuous and Discrete Concepts for Detecting Transport Barriers in the Planar Circular Restricted Three Body Problem
  11. A Hermeneutic Interpretation of Concepts in a Cooperative Multicultural Working Project
  12. Neural relational inference for disaster multimedia retrieval
  13. The relationship between audit committees, external auditors, and internal control systems
  14. Automatic feature selection for anomaly detection
  15. Can measurement errors explain variance in the relationship between muscle- and tendon stiffness and range of motion?—a blinded reliability and objectivity study
  16. Performance incentives in activity-based management
  17. Detection of coherent oceanic structures via transfer operators
  18. Challenges and boundaries in implementing social return on investment
  19. Determination of 10 particle-associated multiclass polar and semi-polar pesticides from small streams using accelerated solvent extraction
  20. Cascade PID Controllers Applied on Level and Flow Systems in a SMAR Didactic Plant
  21. Use of Machine-Learning Algorithms Based on Text, Audio and Video Data in the Prediction of Anxiety and Post-Traumatic Stress in General and Clinical Populations