Faulty Process Detection Using Machine Learning Techniques

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Authors

These days, a shortage of resources leads to the adaptation of new digital manufacturing systems. These systems are playing a critical role in improving productivity and quality assurance in real-time process monitoring tasks and are being designed to monitor a production process and aim to save resources, energy, and time. This becomes even more vital in drilling processes to be as optimized and accurate as possible since it often comes last in the processes and a tiny error could lead to undesirable drilling part breakage. It could be even more costly in case the drilling part itself is in an inappropriate condition or damaged. Especially, if the part has a long production time and, in the end, the drilling or threading process goes wrong. Therefore, faulty processes must be forecasted sufficiently in advance to prevent damage and further costs. In this study, a set of machine learning algorithms have been used to develop an analysis of industrial manufacturing processes to detect faulty processes with the purpose of tool and machine protection as well as product quality assurance. The results of this study show that machine learning algorithms can detect faulty processes in the production process with high accuracy.

Original languageEnglish
Title of host publicationCongress on Smart Computing Technologies : Proceedings of CSCT 2022
EditorsJagdish Chand Bansal, Harish Sharma, Antorweep Chakravorty
Number of pages13
PublisherSpringer Singapore
Publication date11.07.2023
Pages321-333
ISBN (print)978-981-99-2467-7, 978-981-99-2470-7
ISBN (electronic)978-981-99-2468-4
DOIs
Publication statusPublished - 11.07.2023
EventCongress on Smart Computing Technologies, 2022 - Soft Computing Research Society / ONLINE , New Delhi, India
Duration: 11.12.202212.12.2022
https://scril.sau.int/csct22/

Bibliographical note

Publisher Copyright:
© 2023, The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

    Research areas

  • Drill tool breakage, Faulty process detection, Machine learning, Tool condition monitoring
  • Engineering

Recently viewed

Publications

  1. Rate constants for the gas-phase reaction of OH with amines
  2. Grundwasseruntersuchungsprogramm, Beprobung von Grundwasser
  3. Constrained Independence for Detecting Interesting Patterns
  4. Mind matters projects for mental health promotion in schools
  5. Von der natürlichen Auslese zur Bildungsselektion 1780 - 1980
  6. Transdisciplinary learning to foster sustainable development
  7. Neural relational inference for disaster multimedia retrieval
  8. Schulische Gesundheitsförderung aus Sicht von Schulleitungen
  9. Emotional design and positive emotions in multimedia learning
  10. Mathematische Kommpetenzen erheben, fördern und herausfordern
  11. Exploring crowdworker participation on digital work platforms
  12. 2016 Emerald Africa Academy of Management Trailblazer Awardee
  13. Health promotion, health promoting school and social inequality
  14. Mit Bildungsstandards arbeiten - kompetenzorientiert unterrichten
  15. Das räumliche Vorstellungsvermögen von Kindern im Vorschulalter.
  16. Das Problem der Eignung in der Aus- und Fortbildung von Pädagogen
  17. The global context and people at work: Special issue introduction
  18. The fall of the "great harlot" and the fate of the aging prostitute
  19. Lernumgebung und Aufgabenkultur reflektieren und weiterentwickeln
  20. Die Blockade der Energiewende wird die USA teuer zu stehen kommen
  21. Nitratbelastung im Grundwasser überschreitet Grenzwert seit Langem
  22. Entwicklung von Testverfahren für die Bildungsstandards Mathematik
  23. Betrieblicher Umgang mit alternden und altersdiversen Belegschaften
  24. Wie einst der Rock'n'Roll – Neue Zugänge zur Musik in digitalen Zeiten?
  25. Remedial scenarios for online and blended learning bridging courses
  26. Environmental performance, carbon performance and earnings management
  27. Suicide prevention in schizophrenia spectrum disorders and psychosis