Effects of maize roots on aggregate stability and enzyme activities in soil
Research output: Journal contributions › Journal articles › Research › peer-review
Standard
In: Geoderma, Vol. 306, 15.11.2017, p. 50-57.
Research output: Journal contributions › Journal articles › Research › peer-review
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - JOUR
T1 - Effects of maize roots on aggregate stability and enzyme activities in soil
AU - Kumar, Amit
AU - Dorodnikov, Maxim
AU - Pausch, Johanna
AU - Kuzyakov, Yakov
AU - Pausch, Johanna
PY - 2017/11/15
Y1 - 2017/11/15
N2 - Soil aggregation and microbial activities within the aggregates are important factors regulating soil carbon (C) turnover. A reliable and sensitive proxy for microbial activity is activity of extracellular enzymes (EEA). In the present study, effects of soil aggregates on EEA were investigated under three maize plant densities (Low, Normal, and High). Bulk soil was fractionated into three aggregate size classes (> 2000 μm large macroaggregates; 2000–250 μm small macroaggregates; < 250 μm microaggregates) by optimal-moisture sieving. Microbial biomass and EEA (β-1,4-glucosidase (BG), β-1,4-N-acetylglucosaminidase (NAG), L-leucine aminopeptidase (LAP) and acid phosphatase (acP)) catalyzing soil organic matter (SOM) decomposition were measured in rooted soil of maize and soil from bare fallow. Microbial biomass C (C mic) decreased with decreasing aggregate size classes. Potential and specific EEA (per unit of C mic) increased from macro- to microaggregates. In comparison with bare fallow soil, specific EEA of microaggregates in rooted soil was higher by up to 73%, 31%, 26%, and 92% for BG, NAG, acP and LAP, respectively. Moreover, high plant density decreased macroaggregates by 9% compared to bare fallow. Enhanced EEA in three aggregate size classes demonstrated activation of microorganisms by roots. Strong EEA in microaggregates can be explained by microaggregates' localization within the soil. Originally adhering to surfaces of macroaggregates, microaggregates were preferentially exposed to C substrates and nutrients, thereby promoting microbial activity.
AB - Soil aggregation and microbial activities within the aggregates are important factors regulating soil carbon (C) turnover. A reliable and sensitive proxy for microbial activity is activity of extracellular enzymes (EEA). In the present study, effects of soil aggregates on EEA were investigated under three maize plant densities (Low, Normal, and High). Bulk soil was fractionated into three aggregate size classes (> 2000 μm large macroaggregates; 2000–250 μm small macroaggregates; < 250 μm microaggregates) by optimal-moisture sieving. Microbial biomass and EEA (β-1,4-glucosidase (BG), β-1,4-N-acetylglucosaminidase (NAG), L-leucine aminopeptidase (LAP) and acid phosphatase (acP)) catalyzing soil organic matter (SOM) decomposition were measured in rooted soil of maize and soil from bare fallow. Microbial biomass C (C mic) decreased with decreasing aggregate size classes. Potential and specific EEA (per unit of C mic) increased from macro- to microaggregates. In comparison with bare fallow soil, specific EEA of microaggregates in rooted soil was higher by up to 73%, 31%, 26%, and 92% for BG, NAG, acP and LAP, respectively. Moreover, high plant density decreased macroaggregates by 9% compared to bare fallow. Enhanced EEA in three aggregate size classes demonstrated activation of microorganisms by roots. Strong EEA in microaggregates can be explained by microaggregates' localization within the soil. Originally adhering to surfaces of macroaggregates, microaggregates were preferentially exposed to C substrates and nutrients, thereby promoting microbial activity.
KW - Free microaggregates
KW - Mean weight diameter
KW - Plant density
KW - Root exudation
KW - Rooted soil
KW - Specific enzyme activity
UR - http://www.scopus.com/inward/record.url?scp=85024365095&partnerID=8YFLogxK
U2 - 10.1016/j.geoderma.2017.07.007
DO - 10.1016/j.geoderma.2017.07.007
M3 - Journal articles
VL - 306
SP - 50
EP - 57
JO - Geoderma
JF - Geoderma
SN - 0016-7061
ER -