Early Detection of Faillure in Conveyor Chain Systems by Wireless Sensor Node

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Standard

Early Detection of Faillure in Conveyor Chain Systems by Wireless Sensor Node. / Bouattour, Ghada; Wang, Lidu; Al-Hammouri, Sajidah et al.
IEEE SENSORS 2023: Conference Proceedings. Piscataway: Institute of Electrical and Electronics Engineers Inc., 2023. (Proceedings of IEEE Sensors).

Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

Harvard

Bouattour, G, Wang, L, Al-Hammouri, S, Yang, J, Viehweger, C & Kanoun, O 2023, Early Detection of Faillure in Conveyor Chain Systems by Wireless Sensor Node. in IEEE SENSORS 2023: Conference Proceedings. Proceedings of IEEE Sensors, Institute of Electrical and Electronics Engineers Inc., Piscataway, 2023 IEEE SENSORS, SENSORS 2023, Vienna, Austria, 29.10.23. https://doi.org/10.1109/SENSORS56945.2023.10325118

APA

Bouattour, G., Wang, L., Al-Hammouri, S., Yang, J., Viehweger, C., & Kanoun, O. (2023). Early Detection of Faillure in Conveyor Chain Systems by Wireless Sensor Node. In IEEE SENSORS 2023: Conference Proceedings (Proceedings of IEEE Sensors). Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/SENSORS56945.2023.10325118

Vancouver

Bouattour G, Wang L, Al-Hammouri S, Yang J, Viehweger C, Kanoun O. Early Detection of Faillure in Conveyor Chain Systems by Wireless Sensor Node. In IEEE SENSORS 2023: Conference Proceedings. Piscataway: Institute of Electrical and Electronics Engineers Inc. 2023. (Proceedings of IEEE Sensors). doi: 10.1109/SENSORS56945.2023.10325118

Bibtex

@inbook{3b210d28f6ce4045a8cc54fd2f998c3b,
title = "Early Detection of Faillure in Conveyor Chain Systems by Wireless Sensor Node",
abstract = "In the ever-growing industrial landscape, the early detection of failures in machines with high accuracy becomes more and more crucial and essential to safe and dependable operations. Based on this concept, a machine learning algorithm is investigated for early detection of failure for conveyor chain systems. The proposed approach is based on the integration of wireless sensor nodes in the conveyor chain to measure the vibrations. The collected data has been acquired in different working conditions including slight imbalances as well as early failure scenarios that do affect the plastic chain. The data was collected using a conveyor chain with a length of 2 meters and with programmable speed and movement scenarios. Furthermore, different loads and forces have been considered during the data collection to mimic real applications in the lab. The selection of features to avoid correlation between them is considered. After comparison between different machine learning algorithms, the C-SVM algorithm is selected with an accuracy of 96.5%, which guarantees high precision and selectivity to the failures.",
keywords = "Early Failure Detection, Industry 5.0, Machine learning, Wireless Sensor Node, Engineering",
author = "Ghada Bouattour and Lidu Wang and Sajidah Al-Hammouri and Jiachen Yang and Christian Viehweger and Olfa Kanoun",
note = "The authors would like to thank the German Federal Ministry for Economic Affairs and Climate Action and AIF for funding the project WearTrack within the Central Innovation Program for SMEs (ZIM). Also, the authors would like to thank the DAAD for funding the project “Promotion of Higher Education in Biomedical Engineering” with the grant number: 57612192. Publisher Copyright: {\textcopyright} 2023 IEEE.; 2023 IEEE SENSORS, SENSORS 2023 ; Conference date: 29-10-2023 Through 01-11-2023",
year = "2023",
doi = "10.1109/SENSORS56945.2023.10325118",
language = "English",
isbn = "979-8-3503-0388-9",
series = "Proceedings of IEEE Sensors",
publisher = "Institute of Electrical and Electronics Engineers Inc.",
booktitle = "IEEE SENSORS 2023",
address = "United States",
url = "https://2023.ieee-sensorsconference.org",

}

RIS

TY - CHAP

T1 - Early Detection of Faillure in Conveyor Chain Systems by Wireless Sensor Node

AU - Bouattour, Ghada

AU - Wang, Lidu

AU - Al-Hammouri, Sajidah

AU - Yang, Jiachen

AU - Viehweger, Christian

AU - Kanoun, Olfa

N1 - The authors would like to thank the German Federal Ministry for Economic Affairs and Climate Action and AIF for funding the project WearTrack within the Central Innovation Program for SMEs (ZIM). Also, the authors would like to thank the DAAD for funding the project “Promotion of Higher Education in Biomedical Engineering” with the grant number: 57612192. Publisher Copyright: © 2023 IEEE.

PY - 2023

Y1 - 2023

N2 - In the ever-growing industrial landscape, the early detection of failures in machines with high accuracy becomes more and more crucial and essential to safe and dependable operations. Based on this concept, a machine learning algorithm is investigated for early detection of failure for conveyor chain systems. The proposed approach is based on the integration of wireless sensor nodes in the conveyor chain to measure the vibrations. The collected data has been acquired in different working conditions including slight imbalances as well as early failure scenarios that do affect the plastic chain. The data was collected using a conveyor chain with a length of 2 meters and with programmable speed and movement scenarios. Furthermore, different loads and forces have been considered during the data collection to mimic real applications in the lab. The selection of features to avoid correlation between them is considered. After comparison between different machine learning algorithms, the C-SVM algorithm is selected with an accuracy of 96.5%, which guarantees high precision and selectivity to the failures.

AB - In the ever-growing industrial landscape, the early detection of failures in machines with high accuracy becomes more and more crucial and essential to safe and dependable operations. Based on this concept, a machine learning algorithm is investigated for early detection of failure for conveyor chain systems. The proposed approach is based on the integration of wireless sensor nodes in the conveyor chain to measure the vibrations. The collected data has been acquired in different working conditions including slight imbalances as well as early failure scenarios that do affect the plastic chain. The data was collected using a conveyor chain with a length of 2 meters and with programmable speed and movement scenarios. Furthermore, different loads and forces have been considered during the data collection to mimic real applications in the lab. The selection of features to avoid correlation between them is considered. After comparison between different machine learning algorithms, the C-SVM algorithm is selected with an accuracy of 96.5%, which guarantees high precision and selectivity to the failures.

KW - Early Failure Detection

KW - Industry 5.0

KW - Machine learning

KW - Wireless Sensor Node

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85179759992&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/c15da057-5162-37d9-9b1b-6a56cad32c63/

U2 - 10.1109/SENSORS56945.2023.10325118

DO - 10.1109/SENSORS56945.2023.10325118

M3 - Article in conference proceedings

AN - SCOPUS:85179759992

SN - 979-8-3503-0388-9

T3 - Proceedings of IEEE Sensors

BT - IEEE SENSORS 2023

PB - Institute of Electrical and Electronics Engineers Inc.

CY - Piscataway

T2 - 2023 IEEE SENSORS, SENSORS 2023

Y2 - 29 October 2023 through 1 November 2023

ER -

Recently viewed

Researchers

  1. Marcus Erben

Publications

  1. Primary Side Circuit Design of a Multi-coil Inductive System for Powering Wireless Sensors
  2. Sliding Mode Control of an Inductive Power Transmission System with Maximum Efficiency
  3. The structure of emotions in learning situations
  4. A Framework for Applying Natural Language Processing in Digital Health Interventions
  5. An Adaptive and Optimized Switching Observer for Sensorless Control of an Electromagnetic Valve Actuator in Camless Internal Combustion Engines
  6. Project and Design of a Catamaran Prototype with Aerial Propulsion System
  7. Understanding storytelling in the context of information systems
  8. On the distinctiveness of tags in collaborative tagging systems
  9. Machine vision system errors for unmanned aerial vehicle navigation
  10. A Comparative Study for Fisheye Image Classification
  11. Influence of Long-Lasting Static Stretching Intervention on Functional and Morphological Parameters in the Plantar Flexors
  12. An observer for sensorless variable valve control in camless internal combustion engines
  13. The Network Dynamics of Movements
  14. Portuguese part-of-speech tagging with large margin structure learning
  15. Stimulating Computing
  16. An integrative research framework for enabling transformative adaptation
  17. Energy model, boundary object and societal lens
  18. Optimising business performance with standard software systems
  19. What´s in a net? or: The end of the average
  20. Image, Process, Performance, Machine
  21. Mechanical characterization of as-cast AA7075/6060 and CuSn6/Cu99.5 compounds using an experimental and numerical push-out test
  22. Repeat Receipts: A device for generating visible data in market research focus groups
  23. Rating Player Actions in Soccer
  24. Privatizing the commons
  25. Influence of data clouds fusion from 3D real-time vision system on robotic group dead reckoning in unknown terrain
  26. Making transparency transparent
  27. Teaching Sustainable Development in a Sensory and Artful Way — Concepts, Methods, and Examples
  28. Using the Domestication Approach for the Analysis of Diffusion and Participation Processes of New Media
  29. Tree and mycorrhizal fungal diversity drive intraspecific and intraindividual trait variation in temperate forests

Press / Media

  1. Rio+20