Professorship for materials mechanics

Organisational unit: Professoship

Organisation profile

The professorship for materials mechanics with a focus on process simulation is a shared professorship carried out in cooperation with the Helmholtz-Zentrum hereon GmbH. In particular, this is concerned with the digital modelling of technological production processes and materials, whereby considerable focus is placed on local modification processes, solid state joining processes and forming processes. The modelling approaches which are used for these range from micromechanics (e.g. crystal plasticity and phase field simulations), to continuum mechanics for describing material behaviour, to approaches for complex process simulations.

Main research areas

At the same time, one of the main focuses of the activities carried out by the professorship at the Leuphana is the development and application of mathematical models (material models) for describing microstructure development and the deformation behaviour of various metallic materials across multiple length scales. These developments often take place in close conjunction with the experimental work being carried out at the hereon. The length scale and timescale on which the relevant processes in the material take place or on which these are modelled depends on the material, the process and the component. Over the past few years, the work group has built up a vast wealth of experience when it comes to modelling many material systems such as these. In addition to carrying out intense studies on deformation processes in metallic materials, the work group has also dealt with additional material systems such as metallic glasses and polymers.

At the Helmholtz-Zentrum hereon, the professorship deals specifically with the experimental study and process modelling of solid state joining processes and manufacturing processes which act on a local level. Some named examples of these are joining processes such as friction stir welding and laser welding, as well as additive manufacturing processes such as friction welding and laser deposition welding. This is accompanied by local modification processes for the targeted adjustment of residual stresses (residual stress engineering), such as laser shock peening and hammer peening. One of the fundamental goals of these research activities is to investigate the entire system of process, microstructure and property through a combination of experimental and simulation-based approaches in order to achieve an improved physical understanding thereof. By adapting the process parameters in a targeted manner, the insights gained can be used to optimise material or structural behaviour, e.g. with regard to deformation and failure behaviour.

The professorship plays an active role in various national and international organisations such as the GAMM (International Association of Applied Mathematics and Mechanics) or the ZHM (Centre for Advanced Materials).

Key teaching focuses are in the fields of applied mechanics and material modelling, as well as in the provision of additional engineering basics.

  1. Published

    Experimental and numerical study of laser shock peening process of AA2198-T3 and AA2198-T8

    Klusemann, B., Keller, S., Huber, N. & Kashaev, N., 2016, Book of Abstracts of the 6th International Conference on Laser Peening and Related Phenomena (6TH ICLPRP). Polese, C. (ed.). University of the Witwatersrand, p. 13 1 p.

    Research output: Contributions to collected editions/worksPublished abstract in conference proceedingsResearchpeer-review

  2. Published

    Experimental and numerical thermo-mechanical analysis of wire-based laser metal deposition of Al-Mg alloys

    Bock, F. E., Herrnring, J., Froend, M., Enz, J., Kashaev, N. & Klusemann, B., 01.04.2021, In: Journal of Manufacturing Processes. 64, p. 982-995 14 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  3. Published

    Experimental investigation of crack propagation mechanism in refill friction stir spot joints of AA6082-T6

    Becker, N., dos Santos, J. F. & Klusemann, B., 16.04.2024, In: Engineering Fracture Mechanics. 300, 11 p., 109963.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  4. Published

    Experimental Investigation of Efficiency and Deposit Process Temperature During Multi-Layer Friction Surfacing

    Kallien, Z., Roos, A. & Klusemann, B., 22.07.2022, Achievements and Trends in Material Forming: Peer-reviewed extended papers selected from the 25 th International Conference on Material Forming (ESAFORM 2022). Vincze, G. & Barlat, F. (eds.). Baech: Trans Tech Publications Ltd, p. 187-193 7 p. (Key Engineering Materials; vol. 926).

    Research output: Contributions to collected editions/worksArticle in conference proceedingsResearchpeer-review

  5. Published

    Experimental investigation of temperature distribution during wire-based laser metal deposition of the Al-Mg alloy 5087

    Frönd, M., Bock, F. E., Riekehr, S., Kashaev, N., Klusemann, B. & Enz, J., 01.12.2018, In: Materials Science Forum. 941, p. 988-994 7 p.

    Research output: Journal contributionsConference article in journalResearchpeer-review

  6. Published

    Experimentally established correlation of friction surfacing process temperature and deposit geometry

    Kallien, Z., Rath, L., Roos, A. & Klusemann, B., 15.09.2020, In: Surface and Coatings Technology. 397, 7 p., 126040.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  7. Published

    Experimentally validated multi-step simulation strategy to predict the fatigue crack propagation rate in residual stress fields after laser shock peening

    Keller, S., Horstmann, M., Kashaev, N. & Klusemann, B., 01.07.2019, In: International Journal of Fatigue. 124, p. 265-276 12 p.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  8. Published

    Experimental-numerical study of laser-shock-peening-induced retardation of fatigue crack propagation in Ti-17 titanium alloy

    Sun, R., Keller, S., Zhu, Y., Guo, W., Kashaev, N. & Klusemann, B., 01.04.2021, In: International Journal of Fatigue. 145, 13 p., 106081.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  9. Published

    Fatigue behaviour of multi-spot joints of 2024-T3 aluminium sheets obtained by refill Friction Stir Spot Welding with polysulfide sealant

    Bernardi, M., Suhuddin, U. F. H., Fu, B., Gerber, J. P., Bianchi, M., Ostrovsky, I., Sievers, B., Faes, K., Maawad, E., Lazzeri, L., dos Santos, J. F. & Klusemann, B., 01.07.2023, In: International Journal of Fatigue. 172, 107539.

    Research output: Journal contributionsJournal articlesResearchpeer-review

  10. Published

    Fatigue crack initiation and propagation in plain and notched PBF-LB/M, WAAM, and wrought 316L stainless steel specimens

    Braun, M., Chen, T., Shen, J., Fassmer, H., Klusemann, B., Sheikhi, S., Ehlers, S., Müller, E., Sarmast, A. & Schubnell, J., 01.08.2024, In: Materials and Design. 244, 18 p., 113122.

    Research output: Journal contributionsJournal articlesResearchpeer-review

Previous 1...3 4 5 6 7 8 9 10 ...16 Next