Wavelet characterizations for anisotropic Besov spaces with 0 p 1
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Standard
in: Proceedings of the Edinburgh Mathematical Society, Jahrgang 47, Nr. 3, 01.10.2004, S. 573-595.
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - JOUR
T1 - Wavelet characterizations for anisotropic Besov spaces with 0 p 1
AU - Hochmuth, Reinhard
AU - Garrigós, Gustavo
AU - Tabacco, Anita
N1 - Funding Information: Acknowledgements. Work partially supported by the European Community Human Potential Programme, contracts HPRN-CT-2002-00286 ‘Breaking Complexity’ and HPRN-CT-2001-00273 ‘HARP’. G.G. was also supported by ‘Programa Ramón y Cajal’ and grant BMF2001-0189, MCyT (Spain). The authors thank an anonymous referee whose careful reading and suggestions led to a much improved version of this paper.
PY - 2004/10/1
Y1 - 2004/10/1
N2 - We present a wavelet characterization of anisotropic Besov spaces B p,q α(ℝ n), valid for the whole range 0 < p, q < ∞, and in terms of multi-resolution analyses with dilation adapted to the anisotropy of the space. Our proofs combine classical techniques based on Bernstein and Jackson-type inequalities, and nonlinear methods for the cases p < 1. Among the consequences of our results, we characterize B p,q α as a linear approximation space, and derive embeddings and interpolation formulae for B p,q α, which appear to be new in the literature when p < 1.
AB - We present a wavelet characterization of anisotropic Besov spaces B p,q α(ℝ n), valid for the whole range 0 < p, q < ∞, and in terms of multi-resolution analyses with dilation adapted to the anisotropy of the space. Our proofs combine classical techniques based on Bernstein and Jackson-type inequalities, and nonlinear methods for the cases p < 1. Among the consequences of our results, we characterize B p,q α as a linear approximation space, and derive embeddings and interpolation formulae for B p,q α, which appear to be new in the literature when p < 1.
KW - Mathematics
KW - Approximation and interpolation spaces
KW - Jackson and Bernstein inequalities
KW - Multilevel decomposition
UR - http://www.scopus.com/inward/record.url?scp=8844223347&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/43d575c8-5b17-312a-9b95-457e40847ec8/
U2 - 10.1017/S001309150300107X
DO - 10.1017/S001309150300107X
M3 - Journal articles
VL - 47
SP - 573
EP - 595
JO - Proceedings of the Edinburgh Mathematical Society
JF - Proceedings of the Edinburgh Mathematical Society
SN - 0013-0915
IS - 3
ER -