Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Standard
in: Patterns, Jahrgang 3, Nr. 4, 100482, 08.04.2022.
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Harvard
APA
Vancouver
Bibtex
}
RIS
TY - JOUR
T1 - Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic
AU - Van Lissa, Caspar J.
AU - Gützkow, Ben
AU - vanDellen, Michelle R.
AU - Dash, Arobindu
AU - Draws, Tim
AU - Stroebe, Wolfgang
AU - Leander, N. Pontus
AU - Agostini, Maximilian
AU - Grygoryshyn, Andrii
AU - Kreienkamp, Jannis
AU - Vetter, Clara S.
AU - Abakoumkin, Georgios
AU - Abdul Khaiyom, Jamilah Hanum
AU - Ahmedi, Vjollca
AU - Akkas, Handan
AU - Almenara, Carlos A.
AU - Atta, Mohsin
AU - Bagci, Sabahat Cigdem
AU - Basel, Sima
AU - Kida, Edona Berisha
AU - Bernardo, Allan B.I.
AU - Buttrick, Nicholas R.
AU - Chobthamkit, Phatthanakit
AU - Choi, Hoon Seok
AU - Cristea, Mioara
AU - Csaba, Sára
AU - Damnjanović, Kaja
AU - Danyliuk, Ivan
AU - Di Santo, Daniela
AU - Douglas, Karen M.
AU - Enea, Violeta
AU - Faller, Daiane G.
AU - Fitzsimons, Gavan
AU - Gheorghiu, Alexandra
AU - Gómez, Ángel
AU - Hamaidia, Ali
AU - Han, Qing
AU - Helmy, Mai
AU - Hudiyana, Joevarian
AU - Jeronimus, Bertus F.
AU - Jiang, Ding Yu
AU - Jovanović, Veljko
AU - Kamenov, Željka
AU - Kende, Anna
AU - Keng, Shian Ling
AU - Kieu, Tra Thi Thanh
AU - Koc, Yasin
AU - Kovyazina, Kamila
AU - Kozytska, Inna
AU - Krause, Joshua
AU - Kruglanksi, Arie W.
AU - Kurapov, Anton
AU - Kutlaca, Maja
AU - Lantos, Nóra Anna
AU - Lemay, Edward P.
AU - Lesmana, Cokorda Bagus Jaya
AU - Louis, Winnifred R.
AU - Lueders, Adrian
AU - Malik, Najma Iqbal
AU - Martinez, Anton
AU - McCabe, Kira O.
AU - Mehulić, Jasmina
AU - Milla, Mirra Noor
AU - Mohammed, Idris
AU - Molinario, Erica
AU - Moyano, Manuel
AU - Muhammad, Hayat
AU - Mula, Silvana
AU - Muluk, Hamdi
AU - Myroniuk, Solomiia
AU - Najafi, Reza
AU - Nisa, Claudia F.
AU - Nyúl, Boglárka
AU - O’Keefe, Paul A.
AU - Osuna, Jose Javier Olivas
AU - Osin, Evgeny N.
AU - Park, Joonha
AU - Pica, Gennaro
AU - Pierro, Antonio
AU - Rees, Jonas H.
AU - Reitsema, Anne Margit
AU - Resta, Elena
AU - Rullo, Marika
AU - Ryan, Michelle K.
AU - Samekin, Adil
AU - Santtila, Pekka
AU - Sasin, Edyta M.
AU - Schumpe, Birga M.
AU - Selim, Heyla A.
AU - Stanton, Michael Vicente
AU - Sultana, Samiah
AU - Sutton, Robbie M.
AU - Tseliou, Eleftheria
AU - Utsugi, Akira
AU - van Breen, Jolien Anne
AU - Van Veen, Kees
AU - Vázquez, Alexandra
AU - Wollast, Robin
AU - Yeung, Victoria Wai lan
AU - Zand, Somayeh
AU - Žeželj, Iris Lav
AU - Zheng, Bang
AU - Zick, Andreas
AU - Zúñiga, Claudia
AU - Bélanger, Jocelyn J.
N1 - Publisher Copyright: © 2022 The Author(s)
PY - 2022/4/8
Y1 - 2022/4/8
N2 - Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant.
AB - Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant.
KW - COVID-19
KW - Economic burden
KW - Health behaviors
KW - Infection risk
KW - random forest
KW - social norms
KW - DSML2: Proof-of-concept: Data science output has been formulated, implemented, and tested for one domain/problem
KW - machine learning
KW - public goods dilemma
KW - health behaviors
KW - Health sciences
UR - http://www.scopus.com/inward/record.url?scp=85127500709&partnerID=8YFLogxK
UR - https://www.mendeley.com/catalogue/fa2e4280-a4c2-3ffd-a3d3-efdbac8cb535/
U2 - 10.1016/j.patter.2022.100482
DO - 10.1016/j.patter.2022.100482
M3 - Journal articles
C2 - 35282654
VL - 3
JO - Patterns
JF - Patterns
SN - 2666-3899
IS - 4
M1 - 100482
ER -