The Use of Factorization and Multimode Parametric Spectra in Estimating Frequency and Spectral Parameters of Signal

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Standard

The Use of Factorization and Multimode Parametric Spectra in Estimating Frequency and Spectral Parameters of Signal. / Semenets, Valerii; Kartashov, Vladimir; Sergiyenko, Oleg et al.
2020 IEEE 29th International Symposium on Industrial Electronics (ISIE): 17 - 19 June, 2020, Delft, Netherlands, Proceedings . Hrsg. / IEEE Industrial Electronics Society (IES) . Piscataway: IEEE - Institute of Electrical and Electronics Engineers Inc., 2020. S. 215-219 9152238 (IEEE International Symposium on Industrial Electronics (ISIE); Band 2020).

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Harvard

Semenets, V, Kartashov, V, Sergiyenko, O, Tikhonov, V, Mercorelli, P, Sheiko, S, Kudriavtseva, NC, Rodriguez-Quinonez, JC & Flores-Fuentes, W 2020, The Use of Factorization and Multimode Parametric Spectra in Estimating Frequency and Spectral Parameters of Signal. in IEEEIES (Hrsg.), 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE): 17 - 19 June, 2020, Delft, Netherlands, Proceedings ., 9152238, IEEE International Symposium on Industrial Electronics (ISIE), Bd. 2020, IEEE - Institute of Electrical and Electronics Engineers Inc., Piscataway, S. 215-219, 29th IEEE International Symposium on Industrial Electronics, ISIE 2020, Delft, Niederlande, 17.06.20. https://doi.org/10.1109/ISIE45063.2020.9152238

APA

Semenets, V., Kartashov, V., Sergiyenko, O., Tikhonov, V., Mercorelli, P., Sheiko, S., Kudriavtseva, N. C., Rodriguez-Quinonez, J. C., & Flores-Fuentes, W. (2020). The Use of Factorization and Multimode Parametric Spectra in Estimating Frequency and Spectral Parameters of Signal. In IEEE. I. E. S. (Hrsg.), 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE): 17 - 19 June, 2020, Delft, Netherlands, Proceedings (S. 215-219). Artikel 9152238 (IEEE International Symposium on Industrial Electronics (ISIE); Band 2020). IEEE - Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISIE45063.2020.9152238

Vancouver

Semenets V, Kartashov V, Sergiyenko O, Tikhonov V, Mercorelli P, Sheiko S et al. The Use of Factorization and Multimode Parametric Spectra in Estimating Frequency and Spectral Parameters of Signal. in IEEEIES, Hrsg., 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE): 17 - 19 June, 2020, Delft, Netherlands, Proceedings . Piscataway: IEEE - Institute of Electrical and Electronics Engineers Inc. 2020. S. 215-219. 9152238. (IEEE International Symposium on Industrial Electronics (ISIE)). doi: 10.1109/ISIE45063.2020.9152238

Bibtex

@inbook{922b9402c79844f0b47a9dc739a81eb7,
title = "The Use of Factorization and Multimode Parametric Spectra in Estimating Frequency and Spectral Parameters of Signal",
abstract = "A multiplicative autoregressive model is constructed based on the linear prediction model. The expressions describing such a model are derived. A formula for the parametric spectral estimation of a random signal multiplicative model is given. Relations are obtained for the decomposition of the multimode power spectral density into simple spectral components. Examples of the decomposition of multimode spectra of random signals into simpler components are considered. Keywords-power spectral density, multiplicative autoregressive model, parametric spectral analysis, characteristic equation.",
keywords = "characteristic equation, multiplicative autoregressive model, parametric spectral analysis, power spectral density, Engineering",
author = "Valerii Semenets and Vladimir Kartashov and Oleg Sergiyenko and Vyacheslav Tikhonov and Paolo Mercorelli and Sergiy Sheiko and Kudriavtseva, {Nataliya Chmelarova} and Rodriguez-Quinonez, {Julio C.} and Wendy Flores-Fuentes",
year = "2020",
month = jun,
day = "1",
doi = "10.1109/ISIE45063.2020.9152238",
language = "English",
isbn = "978-1-7281-5636-1",
series = "IEEE International Symposium on Industrial Electronics (ISIE)",
publisher = "IEEE - Institute of Electrical and Electronics Engineers Inc.",
pages = "215--219",
editor = "{IEEE Industrial Electronics Society (IES) }",
booktitle = "2020 IEEE 29th International Symposium on Industrial Electronics (ISIE)",
address = "United States",
note = "29th IEEE International Symposium on Industrial Electronics, ISIE 2020, ISIE 2020 ; Conference date: 17-06-2020 Through 19-06-2020",
url = "http://isie2020.org/",

}

RIS

TY - CHAP

T1 - The Use of Factorization and Multimode Parametric Spectra in Estimating Frequency and Spectral Parameters of Signal

AU - Semenets, Valerii

AU - Kartashov, Vladimir

AU - Sergiyenko, Oleg

AU - Tikhonov, Vyacheslav

AU - Mercorelli, Paolo

AU - Sheiko, Sergiy

AU - Kudriavtseva, Nataliya Chmelarova

AU - Rodriguez-Quinonez, Julio C.

AU - Flores-Fuentes, Wendy

N1 - Conference code: 29

PY - 2020/6/1

Y1 - 2020/6/1

N2 - A multiplicative autoregressive model is constructed based on the linear prediction model. The expressions describing such a model are derived. A formula for the parametric spectral estimation of a random signal multiplicative model is given. Relations are obtained for the decomposition of the multimode power spectral density into simple spectral components. Examples of the decomposition of multimode spectra of random signals into simpler components are considered. Keywords-power spectral density, multiplicative autoregressive model, parametric spectral analysis, characteristic equation.

AB - A multiplicative autoregressive model is constructed based on the linear prediction model. The expressions describing such a model are derived. A formula for the parametric spectral estimation of a random signal multiplicative model is given. Relations are obtained for the decomposition of the multimode power spectral density into simple spectral components. Examples of the decomposition of multimode spectra of random signals into simpler components are considered. Keywords-power spectral density, multiplicative autoregressive model, parametric spectral analysis, characteristic equation.

KW - characteristic equation

KW - multiplicative autoregressive model

KW - parametric spectral analysis

KW - power spectral density

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85089485563&partnerID=8YFLogxK

U2 - 10.1109/ISIE45063.2020.9152238

DO - 10.1109/ISIE45063.2020.9152238

M3 - Article in conference proceedings

AN - SCOPUS:85089485563

SN - 978-1-7281-5636-1

T3 - IEEE International Symposium on Industrial Electronics (ISIE)

SP - 215

EP - 219

BT - 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE)

A2 - , IEEE Industrial Electronics Society (IES)

PB - IEEE - Institute of Electrical and Electronics Engineers Inc.

CY - Piscataway

T2 - 29th IEEE International Symposium on Industrial Electronics, ISIE 2020

Y2 - 17 June 2020 through 19 June 2020

ER -

DOI

Zuletzt angesehen

Publikationen

  1. Hierarchical trait filtering at different spatial scales determines beetle assemblages in deadwood
  2. Dynamic Lot Size Optimization with Reinforcement Learning
  3. Use of Machine-Learning Algorithms Based on Text, Audio and Video Data in the Prediction of Anxiety and Post-Traumatic Stress in General and Clinical Populations
  4. Comparison of different FEM codes approach for extrusion process analysis
  5. Towards a spatial understanding of identity play
  6. Global Finite-Time Stabilization of Planar Linear Systems With Actuator Saturation
  7. Effectiveness of a guided multicomponent internet and mobile gratitude training program - A pragmatic randomized controlled trial
  8. Sensor Fusion for Power Line Sensitive Monitoring and Load State Estimation
  9. Clause identification using entropy guided transformation learning
  10. Experimentally established correlation of friction surfacing process temperature and deposit geometry
  11. Constraints are the solution, not the problem
  12. Segment Introduction
  13. Understanding storytelling in the context of information systems
  14. The signal location task as a method quantifying the distribution of attention
  15. Universal Threshold Calculation for Fingerprinting Decoders using Mixture Models
  16. Real-time RDF extraction from unstructured data streams
  17. Age effects on controlling tools with sensorimotor transformations
  18. Supporting the Development and Realization of Data-Driven Business Models with Enterprise Architecture Modeling and Management
  19. Computing regression statistics from grouped data
  20. A localized boundary element method for the floating body problem
  21. On the Decoupling and Output Functional Controllability of Robotic Manipulation
  22. Analysis of PI controllers with anti-windup techniques on level systems
  23. Image compression based on periodic principal components
  24. TRY plant trait database – enhanced coverage and open access
  25. A Review of Latent Variable Modeling Using R - A Step-by-Step-Guide
  26. Knowledge-Enhanced Language Models Are Not Bias-Proof
  27. An Orthogonal Wavelet Denoising Algorithm for Surface Images of Atomic Force Microscopy
  28. Data-driven and physics-based modelling of process behaviour and deposit geometry for friction surfacing
  29. Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expectations
  30. Self-regulation in error management training: emotion control and metacognition as mediators of performance effects
  31. Spaces for challenging experiences, indeterminacy, and experimentation
  32. Teachers’ use of data from digital learning platforms for instructional design