Mining Disease Courses across Organizations: A Methodology Based on Process Mining of Diagnosis Events Datasets
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
This work proposes the use of Process Mining methodologies on healthcare datasets containing diagnosis information as a means to identify the course of a disease across organizations. Datasets containing diagnosis information for administrative purposes are a good candidate due to its standardized format, widespread availability and coverage. We present a methodology to preprocess, cluster and mine diagnosis information and the results of a preliminary use case with diabetes type II. Some meaningful disease courses have been found but less useful patterns do also emerge. Future work involves lowering the level of granularity chosen (ICD three digit codes) and extending the time span of the data available (three years).
Originalsprache | Englisch |
---|---|
Titel | 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2019 |
Anzahl der Seiten | 4 |
Verlag | IEEE - Institute of Electrical and Electronics Engineers Inc. |
Erscheinungsdatum | 01.07.2019 |
Seiten | 354-357 |
Aufsatznummer | 8857149 |
ISBN (Print) | 978-1-5386-1312-2 |
ISBN (elektronisch) | 978-1-5386-1311-5 |
DOIs | |
Publikationsstatus | Erschienen - 01.07.2019 |
Veranstaltung | 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society - EMBC 2019: BIOMEDICAL ENGINEERING RANGING FROM WELLNESS TO INTENSIVE CARE - Berlin, Deutschland Dauer: 23.06.2019 → 27.06.2019 Konferenznummer: 41 https://embc.embs.org/2019/ https://doi.org/10.1109/EMBC.2019.8856410 (Conference Proceeding) |
Bibliographische Notiz
Publisher Copyright:
© 2019 IEEE.
- Wirtschaftsinformatik