Message passing for hyper-relational knowledge graphs
Publikation: Beiträge in Sammelwerken › Aufsätze in Konferenzbänden › Forschung › begutachtet
Authors
Hyper-relational knowledge graphs (KGs) (e.g., Wikidata) enable associating additional key-value pairs along with the main triple to disambiguate, or restrict the validity of a fact. In this work, we propose a message passing based graph encoder - STARE capable of modeling such hyper-relational KGs. Unlike existing approaches, STARE can encode an arbitrary number of additional information (qualifiers) along with the main triple while keeping the semantic roles of qualifiers and triples intact. We also demonstrate that existing benchmarks for evaluating link prediction (LP) performance on hyper-relational KGs suffer from fundamental flaws and thus develop a new Wikidata-based dataset - WD50K. Our experiments demonstrate that STARE based LP model outperforms existing approaches across multiple benchmarks. We also confirm that leveraging qualifiers is vital for link prediction with gains up to 25 MRR points compared to triple-based representations.
Originalsprache | Englisch |
---|---|
Titel | EMNLP 2020 - 2020 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference |
Herausgeber | Bonnie Webber, Trevor Cohn, Yulan He, Yang Liu |
Anzahl der Seiten | 14 |
Verlag | Association for Computational Linguistics (ACL) |
Erscheinungsdatum | 01.01.2020 |
Seiten | 7346-7359 |
ISBN (elektronisch) | 9781952148606 |
DOIs | |
Publikationsstatus | Erschienen - 01.01.2020 |
Extern publiziert | Ja |
Veranstaltung | 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020 - Virtual, Online Dauer: 16.11.2020 → 20.11.2020 https://2020.emnlp.org |
- Informatik
- Wirtschaftsinformatik