Learning to Rate Player Positioning in Soccer

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Learning to Rate Player Positioning in Soccer. / Dick, Uwe; Brefeld, Ulf.
in: Big Data, Jahrgang 7, Nr. 1, 01.03.2019, S. 71-82.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

APA

Vancouver

Dick U, Brefeld U. Learning to Rate Player Positioning in Soccer. Big Data. 2019 Mär 1;7(1):71-82. doi: 10.1089/big.2018.0054

Bibtex

@article{04200661b7d04b428afe977aede22ee4,
title = "Learning to Rate Player Positioning in Soccer",
abstract = "We investigate how to learn functions that rate game situations on a soccer pitch according to their potential to lead to successful attacks. We follow a purely data-driven approach using techniques from deep reinforcement learning to valuate multiplayer positionings based on positional data. Empirically, the predicted scores highly correlate with dangerousness of actual situations and show that rating of player positioning without expert knowledge is possible.",
keywords = "Informatics, deep learning, reinforcement learning, scoring function, spatiotemportal data, Business informatics",
author = "Uwe Dick and Ulf Brefeld",
note = "Publisher Copyright: Copyright 2019, Mary Ann Liebert, Inc., publishers",
year = "2019",
month = mar,
day = "1",
doi = "10.1089/big.2018.0054",
language = "English",
volume = "7",
pages = "71--82",
journal = "Big Data",
issn = "2167-6461",
publisher = "Mary Ann Liebert Inc.",
number = "1",

}

RIS

TY - JOUR

T1 - Learning to Rate Player Positioning in Soccer

AU - Dick, Uwe

AU - Brefeld, Ulf

N1 - Publisher Copyright: Copyright 2019, Mary Ann Liebert, Inc., publishers

PY - 2019/3/1

Y1 - 2019/3/1

N2 - We investigate how to learn functions that rate game situations on a soccer pitch according to their potential to lead to successful attacks. We follow a purely data-driven approach using techniques from deep reinforcement learning to valuate multiplayer positionings based on positional data. Empirically, the predicted scores highly correlate with dangerousness of actual situations and show that rating of player positioning without expert knowledge is possible.

AB - We investigate how to learn functions that rate game situations on a soccer pitch according to their potential to lead to successful attacks. We follow a purely data-driven approach using techniques from deep reinforcement learning to valuate multiplayer positionings based on positional data. Empirically, the predicted scores highly correlate with dangerousness of actual situations and show that rating of player positioning without expert knowledge is possible.

KW - Informatics

KW - deep learning

KW - reinforcement learning

KW - scoring function

KW - spatiotemportal data

KW - Business informatics

UR - http://www.scopus.com/inward/record.url?scp=85063285321&partnerID=8YFLogxK

U2 - 10.1089/big.2018.0054

DO - 10.1089/big.2018.0054

M3 - Journal articles

C2 - 30672712

VL - 7

SP - 71

EP - 82

JO - Big Data

JF - Big Data

SN - 2167-6461

IS - 1

ER -

DOI

Zuletzt angesehen

Publikationen

  1. Nachhaltiger Verkehr schafft wirtschaftliche Chancen
  2. Förderung erneuerbarer Energien und Emissionshandel
  3. Energie- und Klimaschutzpolitik: USA holen langsam auf
  4. Frauenberufstätigkeit im Sozial- und Gesundheitswesen
  5. Innovation in a Computable General Equilibrium Model
  6. Visueller Aktivismus und affektive Öffentlichkeiten
  7. Institutional Perspectives on Digital Transformation
  8. Können wir es uns leisten, nachhaltig zu wirtschaften?
  9. Kompetenzen impliziter Nachhaltigkeitsmanager stärken
  10. Gute Aufgaben im Mathematikunterricht der Grundschule
  11. Environmental Accounting and the Management Challenge
  12. Jackson networks in nonautonomous random environments
  13. Unraveling the Complexity of U.S. Presidential Approval
  14. Walter Benjamin: a New Positive Concept of Destruction
  15. The Russian Energy Sector 1990-2005 and Climate Policy
  16. Nachhaltige Agrarpolitik als kontroverses Diskursfeld
  17. Mehr Wettbewerb im Handwerk durch die Handwerksreform?
  18. Motive und Eigenschaften von Unternehmensgründer(inne)n
  19. Processing of CSR communication: insights from the ELM
  20. Wendy Hui Kyong Chun in Conversation with Adeline Koh
  21. Zur Aktualität der Rhythmusbewegung im 21. Jahrhundert
  22. Impact and Importance of Heterocyclics in Remediation
  23. Warum, wozu und welche Werte in der politischen Bildung?
  24. Comment on “fluorotechnology is critical to modern life
  25. Messung und Steuerung unternehmerischer Nachhaltigkeit
  26. Bäuerliche Lebenswelt, Kommunikation und Nachhaltigkeit
  27. Interoperability of mineral sustainability initiatives
  28. Encouraging environmentally sustainable holiday travel
  29. Rückbau und Entsorgung in der deutschen Atomwirtschaft
  30. Klimawandel kostet deutsche Volkswirtschaft Milliarden
  31. Energiewende forcieren statt unsinnige Pipelines bauen
  32. Die wirtschaftlichen Chancen einer klugen Energiewende
  33. Internal reference price response across store formats
  34. Environmental side effects of pharmaceutical cocktails
  35. Konvivialismus als Kunst und Komplexität als Erfahrung
  36. Die Beziehung zwischen CSR und Corporate Sustainability
  37. Sustainable Supply Chain Management im globalen Kontext
  38. Die Beziehung zwischen CSR und Corporate Sustainability
  39. Erosion modelling designed for water quality simulation