Learning to Rate Player Positioning in Soccer
Publikation: Beiträge in Zeitschriften › Zeitschriftenaufsätze › Forschung › begutachtet
Authors
We investigate how to learn functions that rate game situations on a soccer pitch according to their potential to lead to successful attacks. We follow a purely data-driven approach using techniques from deep reinforcement learning to valuate multiplayer positionings based on positional data. Empirically, the predicted scores highly correlate with dangerousness of actual situations and show that rating of player positioning without expert knowledge is possible.
Originalsprache | Englisch |
---|---|
Zeitschrift | Big Data |
Jahrgang | 7 |
Ausgabenummer | 1 |
Seiten (von - bis) | 71-82 |
Anzahl der Seiten | 12 |
ISSN | 2167-6461 |
DOIs | |
Publikationsstatus | Erschienen - 01.03.2019 |
Bibliographische Notiz
Publisher Copyright:
© 2019, Mary Ann Liebert, Inc.
- Informatik
- Wirtschaftsinformatik