Insights from classifying visual concepts with multiple kernel learning

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Insights from classifying visual concepts with multiple kernel learning. / Binder, Alexander; Nakajima, Shinichi; Kloft, Marius et al.
in: PLoS ONE, Jahrgang 7, Nr. 8, e38897, 24.08.2012.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

Binder, A, Nakajima, S, Kloft, M, Müller, C, Samek, W, Brefeld, U, Müller, KR & Kawanabe, M 2012, 'Insights from classifying visual concepts with multiple kernel learning', PLoS ONE, Jg. 7, Nr. 8, e38897. https://doi.org/10.1371/journal.pone.0038897

APA

Binder, A., Nakajima, S., Kloft, M., Müller, C., Samek, W., Brefeld, U., Müller, K. R., & Kawanabe, M. (2012). Insights from classifying visual concepts with multiple kernel learning. PLoS ONE, 7(8), Artikel e38897. https://doi.org/10.1371/journal.pone.0038897

Vancouver

Binder A, Nakajima S, Kloft M, Müller C, Samek W, Brefeld U et al. Insights from classifying visual concepts with multiple kernel learning. PLoS ONE. 2012 Aug 24;7(8):e38897. doi: 10.1371/journal.pone.0038897

Bibtex

@article{87cdef3380104522acf98d56a05b22b9,
title = "Insights from classifying visual concepts with multiple kernel learning",
abstract = "Combining information from various image features has become a standard technique in concept recognition tasks. However, the optimal way of fusing the resulting kernel functions is usually unknown in practical applications. Multiple kernel learning (MKL) techniques allow to determine an optimal linear combination of such similarity matrices. Classical approaches to MKL promote sparse mixtures. Unfortunately, 1-norm regularized MKL variants are often observed to be outperformed by an unweighted sum kernel. The main contributions of this paper are the following: we apply a recently developed non-sparse MKL variant to state-of-the-art concept recognition tasks from the application domain of computer vision. We provide insights on benefits and limits of non-sparse MKL and compare it against its direct competitors, the sum-kernel SVM and sparse MKL. We report empirical results for the PASCAL VOC 2009 Classification and ImageCLEF2010 Photo Annotation challenge data sets. Data sets (kernel matrices) as well as further information are available at http://doc.ml.tuberlin.de/image_mkl/(Accessed 2012 Jun 25).",
keywords = "Informatics, concept formation, controlled study, histogram, image display, intermethod comparison, kernel method, machine learning, scoring system, support vector machine, task performance, validity, Business informatics",
author = "Alexander Binder and Shinichi Nakajima and Marius Kloft and Christina M{\"u}ller and Wojciech Samek and Ulf Brefeld and M{\"u}ller, {Klaus Robert} and Motoaki Kawanabe",
year = "2012",
month = aug,
day = "24",
doi = "10.1371/journal.pone.0038897",
language = "English",
volume = "7",
journal = "PLoS ONE",
issn = "1932-6203",
publisher = "Public Library of Science",
number = "8",

}

RIS

TY - JOUR

T1 - Insights from classifying visual concepts with multiple kernel learning

AU - Binder, Alexander

AU - Nakajima, Shinichi

AU - Kloft, Marius

AU - Müller, Christina

AU - Samek, Wojciech

AU - Brefeld, Ulf

AU - Müller, Klaus Robert

AU - Kawanabe, Motoaki

PY - 2012/8/24

Y1 - 2012/8/24

N2 - Combining information from various image features has become a standard technique in concept recognition tasks. However, the optimal way of fusing the resulting kernel functions is usually unknown in practical applications. Multiple kernel learning (MKL) techniques allow to determine an optimal linear combination of such similarity matrices. Classical approaches to MKL promote sparse mixtures. Unfortunately, 1-norm regularized MKL variants are often observed to be outperformed by an unweighted sum kernel. The main contributions of this paper are the following: we apply a recently developed non-sparse MKL variant to state-of-the-art concept recognition tasks from the application domain of computer vision. We provide insights on benefits and limits of non-sparse MKL and compare it against its direct competitors, the sum-kernel SVM and sparse MKL. We report empirical results for the PASCAL VOC 2009 Classification and ImageCLEF2010 Photo Annotation challenge data sets. Data sets (kernel matrices) as well as further information are available at http://doc.ml.tuberlin.de/image_mkl/(Accessed 2012 Jun 25).

AB - Combining information from various image features has become a standard technique in concept recognition tasks. However, the optimal way of fusing the resulting kernel functions is usually unknown in practical applications. Multiple kernel learning (MKL) techniques allow to determine an optimal linear combination of such similarity matrices. Classical approaches to MKL promote sparse mixtures. Unfortunately, 1-norm regularized MKL variants are often observed to be outperformed by an unweighted sum kernel. The main contributions of this paper are the following: we apply a recently developed non-sparse MKL variant to state-of-the-art concept recognition tasks from the application domain of computer vision. We provide insights on benefits and limits of non-sparse MKL and compare it against its direct competitors, the sum-kernel SVM and sparse MKL. We report empirical results for the PASCAL VOC 2009 Classification and ImageCLEF2010 Photo Annotation challenge data sets. Data sets (kernel matrices) as well as further information are available at http://doc.ml.tuberlin.de/image_mkl/(Accessed 2012 Jun 25).

KW - Informatics

KW - concept formation

KW - controlled study

KW - histogram

KW - image display

KW - intermethod comparison

KW - kernel method

KW - machine learning

KW - scoring system

KW - support vector machine

KW - task performance

KW - validity

KW - Business informatics

UR - http://www.scopus.com/inward/record.url?scp=84865281106&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/bcdfd7f6-4986-310b-b4f3-bbc1bfc4ce2e/

U2 - 10.1371/journal.pone.0038897

DO - 10.1371/journal.pone.0038897

M3 - Journal articles

C2 - 22936970

AN - SCOPUS:84865281106

VL - 7

JO - PLoS ONE

JF - PLoS ONE

SN - 1932-6203

IS - 8

M1 - e38897

ER -

Dokumente

DOI

Zuletzt angesehen

Aktivitäten

  1. Trajectory-based Lagrangian approaches for the extraction and characterization of coherent structures
  2. Robotics (Fachzeitschrift)
  3. Presentation of the paper entitled "Conception and analysis of Cascaded Dual Kalman Filters as virtual sensors for mastication activity of stomatognathic craniomandibular system"
  4. Benign by Design as an Important Building Block of Green and Sustainable Chemistry - Examples of its Application for Molecules, Materials, Products and the Management of Their Flows
  5. Mitglied des Review Panel „Mixed Methods’ in the Humanities? – Support for Projects Combining and Synergizing Qualitative-hermeneutical and Digital Approaches“
  6. Performance under Climatic Conditions
  7. Bacillus pseudofirmus AL-89: A source for industrial relevant proteases
  8. Computersimulation als Erkenntnismethode
  9. Die Liebe zur Kunst
  10. International Research in Children's Literature (Zeitschrift)
  11. Mitglied des IFIP-Beirats, Sitzung des IFIP-Beirats
  12. Profilbildung und Branding
  13. MA-Arbeiten 2016
  14. Sinopale Forum
  15. NETTS – Einblicke in die Hamburger Forschung
  16. Fakultät Management und Technologie (Organisation)
  17. Mohr Siebeck Verlag (Verlag)
  18. Business and Society (Fachzeitschrift)
  19. HyperKult X - Computer als Medium: Spiel-Welten 2001
  20. Startup Booster (Externe Organisation)
  21. Fachbereich Informatik und Gesellschaft (IUG) der Gesellschaft für Informatik e. V. (GI) (Externe Organisation)
  22. Mathematics (Fachzeitschrift)
  23. Treffen der SIG Qualität und Professionsentwicklung der Gesellschaft für Schreibforschung und Schreibdidaktik - 2019
  24. Vortrag „Visualizing a thousand Years: On Jewish Cemeteries and the dH Situation“
  25. Careerist or Educational Aspirants? (Re)-entry of Female Students with Work Experience into Higher Education.
  26. Aby Warburg 150. Work. Legacy. Promise.
  27. Universität von Genua
  28. Mathematik-Kommisison Übergang Schule-Hochschule (Externe Organisation)
  29. L'art queer du convivialisme et la complexité comme expérience: La culture comme transformation dans les espaces de possibilité urbains
  30. DFG-NSF Research Conference “Sustainable Use of Nanomaterials for Novel Engineering Solutions” 2009
  31. Mathematics (Fachzeitschrift)