Gaussian processes for dispatching rule selection in production scheduling: Comparison of learning techniques

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

Decentralized scheduling with dispatching rules is applied in many fields of logistics and production, especially in semiconductor manufacturing, which is characterized by high complexity and dynamics. Many dispatching rules have been found, which perform well on different scenarios, however no rule has been found, which outperforms other rules across various objectives. To tackle this drawback, approaches, which select dispatching rules depending on the current system conditions, have been proposed. Most of these use learning techniques to switch between rules regarding the current system status. Since the study of Rasmussen [1] has shown that Gaussian processes as a machine learning technique have outperformed other techniques like neural networks under certain conditions, we propose to use them for the selection of dispatching rules in dynamic scenarios. Our analysis has shown that Gaussian processes perform very well in this field of application. Additionally, we showed that the prediction quality Gaussian processes provide could be used successfully. © 2010 IEEE.
OriginalspracheEnglisch
TitelProceedings - IEEE International Conference on Data Mining, ICDM
Anzahl der Seiten8
VerlagIEEE - Institute of Electrical and Electronics Engineers Inc.
Erscheinungsdatum2010
Seiten631-638
ISBN (Print)978-1-4244-9244-2
ISBN (elektronisch)978-0-7695-4257-7
DOIs
PublikationsstatusErschienen - 2010
Extern publiziertJa
Veranstaltung10th IEEE International Conference on Data Mining Workshops - 2010 - Sydney, Australien
Dauer: 14.12.201017.12.2010
Konferenznummer: 10
http://www.wikicfp.com/cfp/servlet/event.showcfp?eventid=7127

Bibliographische Notiz

Cited By :1

Export Date: 23 May 2016

References: Rasmussen, C.E., (1996) Evaluation of Gaussian Processes and Other Methods for Non-linear Regression, , PhD thesis, University of Toronto; Blackstone Jr. John, H., Phillips Don, T., Hogg Gary, L., STATE-OF-THE-ART SURVEY OF DISPATCHING RULES FOR MANUFACTURING JOB SHOP OPERATIONS. (1982) International Journal of Production Research, 20 (1), pp. 27-45; Haupt, R., A survey of priority rule-based scheduling (1989) OR Spektrum, 11 (1), pp. 3-16; Panwalkar, S.S., Iskander, W., A survey of scheduling rules (1977) Operations Research, 25 (1), pp. 45-61; Hildebrandt, T., Heger, J., Scholz-Reiter, B., Towards improved dispatching rules for complex shop floor scenarios - A genetic programming approach (2010) Proceedings of the 12th Annual Conference on Genetic and Evolutionary Computation, , Portland, USA, (accepted paper, to appear); Rajendran, C., Holthaus, O., A comparative study of dispatching rules in dynamic flowshops and jobshops (1999) European Journal of Operational Research, 116 (1), pp. 156-170; Mouelhi-Chibani, W., Pierreval, H., Training a neural network to select dispatching rules in real time (2010) Computers & Industrial Engineering, 58 (2), pp. 249-256; Williams, C.K.I., Rasmussen, C.E., Gaussian processes for regression (1996) Advances in Neural Information Processing Systems, 8, pp. 514-520; Alpaydin, E., (2004) Introduction to Machine Learning (Adaptive Computation and Machine Learning Series), 14 (1). , The MIT Press; Kotsiantis, S.B., Supervised machine learning: A review of classification techniques (2007) Informatica (Ljubljana), 31 (3), pp. 249-268; Priore, P., De La Fuente, D., Gomez, A., Puente, J., A review of machine learning in dynamic scheduling of flexible manufacturing systems (2001) Artificial Intelligence for Engineering Design, Analysis and Manufacturing: AIEDAM, 15 (3), pp. 251-263. , DOI 10.1017/S0890060401153059; Wu, S.-Y.D., Wysk, R., An application of discreteevent simulation to on-line control and scheduling in flexible manufacturing (1989) International Journal of Production Research, 27 (9), pp. 1603-1623; Sun, Y.-L., Yih, Y., An intelligent controller for manufacturing cells (1996) International Journal of Production Research, 34 (8), pp. 2353-2373; El-Bouri, A., Shah, P., A neural network for dispatching rule selection in a job shop (2006) International Journal of Advanced Manufacturing Technology, 31 (3-4), pp. 342-349. , DOI 10.1007/s00170-005-0190-y; O'Hagan, A., Curve fitting and optimal design (1978) Journal of the Royal Statistical Society, 40 (1), pp. 1-42; Rasmussen, C.E., Williams, C.K.I., (2006) Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning), , The MIT Press; Neal, R.M., (1996) Bayesian Learning for Neural Networks (Lecture Notes in Statistics), , 1st ed. Springer; Conway, R.W., Priority dispatching and job lateness in a job shop (1965) Journal of Industrial Engineering, 16, pp. 228-237; Holthaus, O., Rajendran, C., Efficient jobshop dispatching rules: Further developments (2000) Production Planning and Control, 11 (2), pp. 171-178. , DOI 10.1080/095372800232379; Law, A.M., (2007) Simulation Modeling and Analysis, , 4th ed. Boston, USA: McGraw-Hill; Huffman, B.J., An object-oriented version of SIMLIB (a simple simulation package) (2001) INFORMS Transactions on Education, 2 (1), pp. 1-15; Williams, C., (2006) Gaussian Processes for Machine Learning - Software Examples, , http://www.gaussianprocess.org/gpml/code/matlab/doc; Bonilla, E.V., Ming, K., Chai, A., Williams, C.K.I., Multi-task gaussian process prediction (2008) Advances in Neural Information Processing Systems, 20; Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H., The weka data mining software: An update (2009) SIGKDD Explor. Newsl., 11 (1), pp. 10-18; Cleary, J.G., Trigg, L.E., K*: An instance-based learner using an entropic distance measure (1995) 12th International Conference on Machine Learning, pp. 108-114. , Morgan Kaufmann, San Francisco

DOI

Zuletzt angesehen

Publikationen

  1. Modeling items for text comprehension assessment using confirmatory factor analysis
  2. Using CNNs to Detect Graphical Representations of Structural Equation Models in IS Papers
  3. ASSESS — automatic self-assessment using linked data
  4. How Much Tracking Is Necessary? - The Learning Curve in Bayesian User Journey Analysis
  5. An evaluation of BPR methodologies adopting NIMSAD: A systematic framework for understanding and evaluating methodologies
  6. Self-tuning of a kalman filter applied in a DC drive and in a kalman-based sensor
  7. 7th open challenge on question answering over linked data (QALD-7)
  8. An expert-based reference list of variables for characterizing and monitoring social-ecological systems
  9. Evaluation of standard ERP software implementation approaches in terms of their capability for business process optimization
  10. A Review of Latent Variable Modeling Using R - A Step-by-Step-Guide
  11. Practical guide to SAP Netweaver PI-development
  12. Modelling and implementation of an Order2Cash Process in distributed systems
  13. Preventive Diagnostics for cardiovascular diseases based on probabilistic methods and description logic
  14. Knowledge-Enhanced Language Models Are Not Bias-Proof
  15. Mechanistic Realization of the Turtle Shell
  16. Alternating between Partial and Complete Organization
  17. The fuzzy relationship of intelligence and problem solving in computer simulations
  18. Patching Together a Global Script
  19. A Multilevel Inverter Bridge Control Structure with Energy Storage Using Model Predictive Control for Flat Systems
  20. Bridging the Gap: Generating a Comprehensive Biomedical Knowledge Graph Question Answering Dataset
  21. Age effects on controlling tools with sensorimotor transformations
  22. Improved sensorimotor control is not connected with improved proprioception
  23. Neural network-based estimation and compensation of friction for enhanced deep drawing process control
  24. Data-driven and physics-based modelling of process behaviour and deposit geometry for friction surfacing
  25. Teaching methods for modelling problems and students’ task-specific enjoyment, value, interest and self-efficacy expectations
  26. Changes of Perception
  27. Appendix A: Design, implementation, and analysis of the iGOES project
  28. Self-regulation in error management training: emotion control and metacognition as mediators of performance effects