Feature Extraction and Aggregation for Predicting the Euro 2016

Publikation: Beiträge in ZeitschriftenKonferenzaufsätze in FachzeitschriftenForschungbegutachtet

Authors

This paper is addressing the challenge of predicting Euro 2016 outcomes. A set of processed features alongside with a new proposed feature are used to train a linear model to compute scores of 24 participating countries. The obtained scores form fwin, lose, drawg probabilities for all possible fixtures. The empirical evaluation until the semi-finals shows that the conceptually simple approach proves accurate for countries with historical data.

OriginalspracheEnglisch
BuchreihenCEUR Workshop Proceedings
Jahrgang1842
Ausgabenummer1842
Anzahl der Seiten7
ISSN1613-0073
PublikationsstatusErschienen - 09.2016
VeranstaltungMachine Learning and Data Mining for Sports Analytics - MLSA 2016 : ECML/PKDD 2016 workshop - Riva del Garda, Italien
Dauer: 19.09.2016 → …
Konferenznummer: 3
https://dtai.cs.kuleuven.be/events/MLSA16/

Dokumente

Links