Evaluating structural and compositional canopy characteristics to predict the light-demand signature of the forest understorey in mixed, semi-natural temperate forests

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Standard

Evaluating structural and compositional canopy characteristics to predict the light-demand signature of the forest understorey in mixed, semi-natural temperate forests. / Depauw, Leen; Perring, Michael P.; Landuyt, Dries et al.
in: Applied Vegetation Science, Jahrgang 24, Nr. 1, e12532, 01.01.2021.

Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

Harvard

Depauw, L, Perring, MP, Landuyt, D, Maes, SL, Blondeel, H, De Lombaerde, E, Brūmelis, G, Brunet, J, Closset-Kopp, D, Decocq, G, Den Ouden, J, Härdtle, W, Hédl, R, Heinken, T, Heinrichs, S, Jaroszewicz, B, Kopecký, M, Liepiņa, I, Macek, M, Máliš, F, Schmidt, W, Smart, SM, Ujházy, K, Wulf, M & Verheyen, K 2021, 'Evaluating structural and compositional canopy characteristics to predict the light-demand signature of the forest understorey in mixed, semi-natural temperate forests', Applied Vegetation Science, Jg. 24, Nr. 1, e12532. https://doi.org/10.1111/avsc.12532

APA

Depauw, L., Perring, M. P., Landuyt, D., Maes, S. L., Blondeel, H., De Lombaerde, E., Brūmelis, G., Brunet, J., Closset-Kopp, D., Decocq, G., Den Ouden, J., Härdtle, W., Hédl, R., Heinken, T., Heinrichs, S., Jaroszewicz, B., Kopecký, M., Liepiņa, I., Macek, M., ... Verheyen, K. (2021). Evaluating structural and compositional canopy characteristics to predict the light-demand signature of the forest understorey in mixed, semi-natural temperate forests. Applied Vegetation Science, 24(1), Artikel e12532. https://doi.org/10.1111/avsc.12532

Vancouver

Depauw L, Perring MP, Landuyt D, Maes SL, Blondeel H, De Lombaerde E et al. Evaluating structural and compositional canopy characteristics to predict the light-demand signature of the forest understorey in mixed, semi-natural temperate forests. Applied Vegetation Science. 2021 Jan 1;24(1):e12532. Epub 2020 Sep 23. doi: 10.1111/avsc.12532

Bibtex

@article{dd7b00cb4efb4d18a5b3ee6cda90fda4,
title = "Evaluating structural and compositional canopy characteristics to predict the light-demand signature of the forest understorey in mixed, semi-natural temperate forests",
abstract = "Questions: Light availability at the forest floor affects many forest ecosystem processes, and is often quantified indirectly through easy-to-measure stand characteristics. We investigated how three such characteristics, basal area, canopy cover and canopy closure, were related to each other in structurally complex mixed forests. We also asked how well they can predict the light-demand signature of the forest understorey (estimated as the mean Ellenberg indicator value for light [“EIVLIGHT”] and the proportion of “forest specialists” [“%FS”] within the plots). Furthermore, we asked whether accounting for the shade-casting ability of individual canopy species could improve predictions of EIVLIGHT and %FS. Location: A total of 192 study plots from nineteen temperate forest regions across Europe. Methods: In each plot, we measured stand basal area (all stems >7.5 cm diameter), canopy closure (with a densiometer) and visually estimated the percentage cover of all plant species in the herb (<1 m), shrub (1–7 m) and tree layer (>7 m). We used linear mixed-effect models to assess the relationships between basal area, canopy cover and canopy closure. We performed model comparisons, based on R2 and the Akaike Information Criterion (AIC), to assess which stand characteristics can predict EIVLIGHT and %FS best, and to assess whether canopy shade-casting ability can significantly improve model fit. Results: Canopy closure and cover were weakly related to each other, but showed no relation with basal area. For both EIVLIGHT and %FS, canopy cover was the best predictor. Including the share of high-shade-casting species in both the basal-area and cover models improved the model fit for EIVLIGHT, but not for %FS. Conclusions: The typically expected relationships between basal area, canopy cover and canopy closure were weak or even absent in structurally complex mixed forests. In these forests, easy-to-measure structural canopy characteristics were poor predictors of the understorey light-demand signature, but accounting for compositional characteristics could improve predictions.",
keywords = "basal area, canopy closure, canopy cover, Ellenberg indicator values, herb layer, light availability, light transmittance, shade-casting ability, temperate forest, understorey, Ecosystems Research, Environmental planning",
author = "Leen Depauw and Perring, {Michael P.} and Dries Landuyt and Maes, {Sybryn L.} and Haben Blondeel and {De Lombaerde}, Emiel and Guntis Brūmelis and J{\"o}rg Brunet and D{\'e}borah Closset-Kopp and Guillaume Decocq and {Den Ouden}, Jan and Werner H{\"a}rdtle and Radim H{\'e}dl and Thilo Heinken and Steffi Heinrichs and Bogdan Jaroszewicz and Martin Kopeck{\'y} and Ilze Liepiņa and Martin Macek and Franti{\v s}ek M{\'a}li{\v s} and Wolfgang Schmidt and Smart, {Simon M.} and Karol Ujh{\'a}zy and Monika Wulf and Kris Verheyen",
year = "2021",
month = jan,
day = "1",
doi = "10.1111/avsc.12532",
language = "English",
volume = "24",
journal = "Applied Vegetation Science",
issn = "1402-2001",
publisher = "Wiley-Blackwell Publishing, Inc.",
number = "1",

}

RIS

TY - JOUR

T1 - Evaluating structural and compositional canopy characteristics to predict the light-demand signature of the forest understorey in mixed, semi-natural temperate forests

AU - Depauw, Leen

AU - Perring, Michael P.

AU - Landuyt, Dries

AU - Maes, Sybryn L.

AU - Blondeel, Haben

AU - De Lombaerde, Emiel

AU - Brūmelis, Guntis

AU - Brunet, Jörg

AU - Closset-Kopp, Déborah

AU - Decocq, Guillaume

AU - Den Ouden, Jan

AU - Härdtle, Werner

AU - Hédl, Radim

AU - Heinken, Thilo

AU - Heinrichs, Steffi

AU - Jaroszewicz, Bogdan

AU - Kopecký, Martin

AU - Liepiņa, Ilze

AU - Macek, Martin

AU - Máliš, František

AU - Schmidt, Wolfgang

AU - Smart, Simon M.

AU - Ujházy, Karol

AU - Wulf, Monika

AU - Verheyen, Kris

PY - 2021/1/1

Y1 - 2021/1/1

N2 - Questions: Light availability at the forest floor affects many forest ecosystem processes, and is often quantified indirectly through easy-to-measure stand characteristics. We investigated how three such characteristics, basal area, canopy cover and canopy closure, were related to each other in structurally complex mixed forests. We also asked how well they can predict the light-demand signature of the forest understorey (estimated as the mean Ellenberg indicator value for light [“EIVLIGHT”] and the proportion of “forest specialists” [“%FS”] within the plots). Furthermore, we asked whether accounting for the shade-casting ability of individual canopy species could improve predictions of EIVLIGHT and %FS. Location: A total of 192 study plots from nineteen temperate forest regions across Europe. Methods: In each plot, we measured stand basal area (all stems >7.5 cm diameter), canopy closure (with a densiometer) and visually estimated the percentage cover of all plant species in the herb (<1 m), shrub (1–7 m) and tree layer (>7 m). We used linear mixed-effect models to assess the relationships between basal area, canopy cover and canopy closure. We performed model comparisons, based on R2 and the Akaike Information Criterion (AIC), to assess which stand characteristics can predict EIVLIGHT and %FS best, and to assess whether canopy shade-casting ability can significantly improve model fit. Results: Canopy closure and cover were weakly related to each other, but showed no relation with basal area. For both EIVLIGHT and %FS, canopy cover was the best predictor. Including the share of high-shade-casting species in both the basal-area and cover models improved the model fit for EIVLIGHT, but not for %FS. Conclusions: The typically expected relationships between basal area, canopy cover and canopy closure were weak or even absent in structurally complex mixed forests. In these forests, easy-to-measure structural canopy characteristics were poor predictors of the understorey light-demand signature, but accounting for compositional characteristics could improve predictions.

AB - Questions: Light availability at the forest floor affects many forest ecosystem processes, and is often quantified indirectly through easy-to-measure stand characteristics. We investigated how three such characteristics, basal area, canopy cover and canopy closure, were related to each other in structurally complex mixed forests. We also asked how well they can predict the light-demand signature of the forest understorey (estimated as the mean Ellenberg indicator value for light [“EIVLIGHT”] and the proportion of “forest specialists” [“%FS”] within the plots). Furthermore, we asked whether accounting for the shade-casting ability of individual canopy species could improve predictions of EIVLIGHT and %FS. Location: A total of 192 study plots from nineteen temperate forest regions across Europe. Methods: In each plot, we measured stand basal area (all stems >7.5 cm diameter), canopy closure (with a densiometer) and visually estimated the percentage cover of all plant species in the herb (<1 m), shrub (1–7 m) and tree layer (>7 m). We used linear mixed-effect models to assess the relationships between basal area, canopy cover and canopy closure. We performed model comparisons, based on R2 and the Akaike Information Criterion (AIC), to assess which stand characteristics can predict EIVLIGHT and %FS best, and to assess whether canopy shade-casting ability can significantly improve model fit. Results: Canopy closure and cover were weakly related to each other, but showed no relation with basal area. For both EIVLIGHT and %FS, canopy cover was the best predictor. Including the share of high-shade-casting species in both the basal-area and cover models improved the model fit for EIVLIGHT, but not for %FS. Conclusions: The typically expected relationships between basal area, canopy cover and canopy closure were weak or even absent in structurally complex mixed forests. In these forests, easy-to-measure structural canopy characteristics were poor predictors of the understorey light-demand signature, but accounting for compositional characteristics could improve predictions.

KW - basal area

KW - canopy closure

KW - canopy cover

KW - Ellenberg indicator values

KW - herb layer

KW - light availability

KW - light transmittance

KW - shade-casting ability

KW - temperate forest

KW - understorey

KW - Ecosystems Research

KW - Environmental planning

UR - http://www.scopus.com/inward/record.url?scp=85092637863&partnerID=8YFLogxK

U2 - 10.1111/avsc.12532

DO - 10.1111/avsc.12532

M3 - Journal articles

AN - SCOPUS:85092637863

VL - 24

JO - Applied Vegetation Science

JF - Applied Vegetation Science

SN - 1402-2001

IS - 1

M1 - e12532

ER -

DOI

Zuletzt angesehen

Aktivitäten

  1. University of Basel
  2. From e-learning to the acquirement of competencies: wiki-based knowledge management and complex problem solving
  3. Digital, open and collaborative: New teaching formats for times of crisis – and beyond?
  4. LC-MS identification of the photo-transformation products of desipramine with studying the effect of different environmental variables on the kinetics of their formation
  5. Modeling Self-Organization (3rd International Conference of the ESHS)
  6. Knowledge-based views on Innovation: What's in it for schools?
  7. Does participatory governance help address long-term environmental problems? Conceptual framework and empirical evidence from public decision-making processes in 23 democracies
  8. MSc-Thesis: The effect of tree diversity on leaf damage and leaf shedding
  9. Reading strategy instruction and students' perceptions on fostering self-regulated reading
  10. Dynamics Days Europe 2018
  11. Assessing Key Competencies In Higher Education For Sustainable Devlopment: Insights From the Deployment Of Innovative Instruments
  12. Workshop on plasma modelling and simulation - WOPMAS 2018
  13. East German Spas: between path dependency and tourism life cycle
  14. Group Decision & Negotiation (Zeitschrift)
  15. Interactive Value Creation & Sustainability: Guest lecture “Innovation Strategy“
  16. Memory Flows Like the Tide at Dusk
  17. University of Exeter
  18. Minerva: A Review of Science, Learning and Policy (Fachzeitschrift)
  19. 15 Jahre „Jena-Experiment 2017
  20. LABOR.A® 2019 - LABORA19
  21. Many Happy Returns - 2013
  22. Moderation der Arbeitsgruppe: "Qualitative Inhaltsanalyse"
  23. Lesung & Diskussion: "Liebesmühe"
  24. Vor-Ort-Meßgeräte
  25. How to get things done with words in Irish English and English English: Pragmatics and dialectology at the cross-road

Publikationen

  1. An interdisciplinary perspective on scaling in transitions
  2. Editorial: Machine Learning and Data Mining in Materials Science
  3. Mathematical Model of Double Row Self-Aligning Ball Bearing
  4. Non-identity – So what? A political scientist’s perspective on a curious but somehow arbitrary problem
  5. Integrating inductive and deductive analysis to identify and characterize archetypical social-ecological systems and their changes
  6. Application of novel constrained friction processing method to produce fine grained biomedical Mg-Zn-Ca alloy
  7. Sustainable Development and Material Flows
  8. Computational Study of Three-Dimensional Lagrangian Transport and Mixing in a Stirred Tank Reactor  
  9. The significance of tree-tree interactions for forest ecosystem functioning
  10. Quantification of phototrophically grown Galdieria sulphuraria and other microalgae using diphenylamine
  11. Faster Positioning of One Degree-of-Freedom Mechanical Systems with Friction and Actuator Saturation
  12. Principals between exploitation and exploration
  13. Creating regional futures
  14. Number Pyramids as a Mathematically Rich Learning Environment for All Students
  15. An inclusive future: disabled populations in the context of climate and environmental change
  16. Testing socio-cultural valuation methods of ecosystem services to explain land use preferences
  17. Precariousness as a conceptual basis for the understanding of art as uninterrupted primacy of play
  18. Multivariate Optimization of Analytical Methodology and a First Attempt to an Environmental Risk Assessment of β-Blockers in Hospital Wastewater
  19. Relativity in Social Cognition: Basic processes and novel applications of social comparisons
  20. Microstructure evolution of Mg-11Gd-4.5Y-1Nd-1.5Zn-0.5Zr (wt%) alloy during deformation and its effect on strengthening
  21. Creating uncertainty in the governance of arrival and return: target-group constructions in Bavarian AnkER facilities