ETL ensembles for chunking, NER and SRL

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

We present a new ensemble method that uses Entropy Guided Transformation Learning (ETL) as the base learner. The proposed approach, ETL Committee, combines the main ideas of Bagging and Random Subspaces. We also propose a strategy to include redundancy in transformation-based models. To evaluate the effectiveness of the ensemble method, we apply it to three Natural Language Processing tasks: Text Chunking, Named Entity Recognition and Semantic Role Labeling. Our experimental findings indicate that ETL Committee significantly outperforms single ETL models, achieving state-of-the-art competitive results. Some positive characteristics of the proposed ensemble strategy areworth to mention. First, it improves the ETL effectiveness without any additional human effort. Second, it is particularly useful when dealing with very complex tasks that use large feature sets. And finally, the resulting training and classification processes are very easy to parallelize.

OriginalspracheEnglisch
TitelComputational Linguistics and Intelligent Text Processing : 11th International Conference, CICLing 2010, Iaşi, Romania, March 21-27, 2010. Proceedings
HerausgeberAlexander Gelbukh
Anzahl der Seiten13
ErscheinungsortBerlin
VerlagSpringer
Erscheinungsdatum2010
Seiten100-112
ISBN (Print)3-642-12115-2, 978-3-642-12115-9
ISBN (elektronisch)978-3-642-12116-6
DOIs
PublikationsstatusErschienen - 2010
Extern publiziertJa
Veranstaltung11th International Conference on Computational Linguistics and Intelligent Text Processing - CICLing 2010 - Universität Alexandru Ioan Cuza, Iasi, Rumänien
Dauer: 21.03.201027.03.2010
Konferenznummer: 11
http://www.cicling.org/2010/

DOI