DISCIE–Discriminative Closed Information Extraction

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

This paper introduces a novel method for closed information extraction. The method employs a discriminative approach that incorporates type and entity-specific information to improve relation extraction accuracy, particularly benefiting long-tail relations. Notably, this method demonstrates superior performance compared to state-of-the-art end-to-end generative models. This is especially evident for the problem of large-scale closed information extraction where we are confronted with millions of entities and hundreds of relations. Furthermore, we emphasize the efficiency aspect by leveraging smaller models. In particular, the integration of type-information proves instrumental in achieving performance levels on par with or surpassing those of a larger generative model. This advancement holds promise for more accurate and efficient information extraction techniques.

OriginalspracheEnglisch
TitelThe Semantic Web – ISWC 2024 - 23rd International Semantic Web Conference, Proceedings
HerausgeberGianluca Demartini, Katja Hose, Maribel Acosta, Matteo Palmonari, Gong Cheng, Hala Skaf-Molli, Nicolas Ferranti, Daniel Hernández, Aidan Hogan
Anzahl der Seiten18
ErscheinungsortCham
VerlagSpringer Nature Switzerland AG
Erscheinungsdatum2025
Seiten23-40
ISBN (Print)978-3-031-77849-0
ISBN (elektronisch)978-3-031-77850-6
DOIs
PublikationsstatusElektronische Veröffentlichung vor Drucklegung - 27.11.2024
Veranstaltung23rd International Semantic Web Conference, ISWC 2024 - Hanover, USA / Vereinigte Staaten
Dauer: 11.11.202415.11.2024

Bibliographische Notiz

Publisher Copyright:
© The Author(s), under exclusive license to Springer Nature Switzerland AG 2025.

DOI