DialoKG: Knowledge-Structure Aware Task-Oriented Dialogue Generation

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Authors

Task-oriented dialogue generation is challenging since the underlying knowledge is often dynamic and effectively incorporating knowledge into the learning process is hard. It is particularly challenging to generate both humanlike and informative responses in this setting. Recent research primarily focused on various knowledge distillation methods where the underlying relationship between the facts in a knowledge base is not effectively captured. In this paper, we go one step further and demonstrate how the structural information of a knowledge graph can improve the system's inference capabilities. Specifically, we propose DialoKG, a novel task-oriented dialogue system that effectively incorporates knowledge into a language model. Our proposed system views relational knowledge as a knowledge graph and introduces (1) a structure-aware knowledge embedding technique, and (2) a knowledge graph-weighted attention masking strategy to facilitate the system selecting relevant information during the dialogue generation. An empirical evaluation demonstrates the effectiveness of DialoKG over state-of-theart methods on several standard benchmark datasets.

OriginalspracheEnglisch
TitelFindings of the Association for Computational Linguistics : NAACL 2022 - Findings
Anzahl der Seiten15
VerlagAssociation for Computational Linguistics (ACL)
Erscheinungsdatum01.01.2022
Seiten2557-2571
ISBN (elektronisch)9781955917766
DOIs
PublikationsstatusErschienen - 01.01.2022
Extern publiziertJa
Veranstaltung2022 Findings of the Association for Computational Linguistics - NAACL 2022 - Online + Hyatt Regency Seattle, Seattle, USA / Vereinigte Staaten
Dauer: 10.07.202215.07.2022
https://2022.naacl.org/downloads/handbook-final-v2.pdf
https://aclanthology.org/2022.findings-naacl.0/

DOI