Convergent Adaptive Wavelet Methods for the Stokes Problem

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Standard

Convergent Adaptive Wavelet Methods for the Stokes Problem. / Dahlke, Stephan; Hochmuth, Reinhard; Urban, Karsten.

Multigrid Methods VI: Proceedings of the Sixth European Multigrid Conference Held in Gent, Belgium, September 27-30, 1999. Hrsg. / Eric Dick; K. Riemslagh; J. Vierendeels. 1. Aufl. Berlin : Springer, 2000. S. 66-72 (Lecture Notes in Computational Science and Engineering; Band 14).

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Harvard

Dahlke, S, Hochmuth, R & Urban, K 2000, Convergent Adaptive Wavelet Methods for the Stokes Problem. in E Dick, K Riemslagh & J Vierendeels (Hrsg.), Multigrid Methods VI: Proceedings of the Sixth European Multigrid Conference Held in Gent, Belgium, September 27-30, 1999. 1 Aufl., Lecture Notes in Computational Science and Engineering, Bd. 14, Springer, Berlin, S. 66-72, European Multigrid Conference 1999 , Gent, Belgien, 27.09.99. https://doi.org/10.1007/978-3-642-58312-4_8

APA

Dahlke, S., Hochmuth, R., & Urban, K. (2000). Convergent Adaptive Wavelet Methods for the Stokes Problem. in E. Dick, K. Riemslagh, & J. Vierendeels (Hrsg.), Multigrid Methods VI: Proceedings of the Sixth European Multigrid Conference Held in Gent, Belgium, September 27-30, 1999 (1 Aufl., S. 66-72). (Lecture Notes in Computational Science and Engineering; Band 14). Springer. https://doi.org/10.1007/978-3-642-58312-4_8

Vancouver

Dahlke S, Hochmuth R, Urban K. Convergent Adaptive Wavelet Methods for the Stokes Problem. in Dick E, Riemslagh K, Vierendeels J, Hrsg., Multigrid Methods VI: Proceedings of the Sixth European Multigrid Conference Held in Gent, Belgium, September 27-30, 1999. 1 Aufl. Berlin: Springer. 2000. S. 66-72. (Lecture Notes in Computational Science and Engineering). doi: 10.1007/978-3-642-58312-4_8

Bibtex

@inbook{a617cddbb628458e9914b80000239aa9,
title = "Convergent Adaptive Wavelet Methods for the Stokes Problem",
abstract = "We consider wavelet discretizations for the Stokes problem in the mixed and divergence free variational formulation. For both cases, we present convergent adaptive multiscale strategies. Moreover, for adaptive wavelet discretizations of the mixed formulation we provide an easy to implement criterion for enforcing stability.",
keywords = "Mathematics, Mixed Formulation, Stokes Problem, Multiscale Method, Saddle Point Problem, Adaptive Wavelet",
author = "Stephan Dahlke and Reinhard Hochmuth and Karsten Urban",
note = "The work of the first two authors has been supported by Deutsche Forschungs-gemeinschaft (DFG) under Grants Da 117/13–1 and Ho 1846/1–1, respectively. Moreover, this work was supported by the European Commission within the TMR project (Training and Mobility for Researchers) Wavelets and Multiscale Methods in Numerical Analysis and Simulation, No. ERB FMRX CT98 018T4. This paper was written when the third author was in residence at the Istituto di Analisi Numerica del C.N.R. in Pavia, Italy.; European Multigrid Conference 1999 ; Conference date: 27-09-1999 Through 30-09-1999",
year = "2000",
month = jan,
day = "1",
doi = "10.1007/978-3-642-58312-4_8",
language = "English",
isbn = "3-540-67157-9",
series = "Lecture Notes in Computational Science and Engineering",
publisher = "Springer",
pages = "66--72",
editor = "Eric Dick and K. Riemslagh and J. Vierendeels",
booktitle = "Multigrid Methods VI",
address = "Germany",
edition = "1",

}

RIS

TY - CHAP

T1 - Convergent Adaptive Wavelet Methods for the Stokes Problem

AU - Dahlke, Stephan

AU - Hochmuth, Reinhard

AU - Urban, Karsten

N1 - Conference code: 6

PY - 2000/1/1

Y1 - 2000/1/1

N2 - We consider wavelet discretizations for the Stokes problem in the mixed and divergence free variational formulation. For both cases, we present convergent adaptive multiscale strategies. Moreover, for adaptive wavelet discretizations of the mixed formulation we provide an easy to implement criterion for enforcing stability.

AB - We consider wavelet discretizations for the Stokes problem in the mixed and divergence free variational formulation. For both cases, we present convergent adaptive multiscale strategies. Moreover, for adaptive wavelet discretizations of the mixed formulation we provide an easy to implement criterion for enforcing stability.

KW - Mathematics

KW - Mixed Formulation

KW - Stokes Problem

KW - Multiscale Method

KW - Saddle Point Problem

KW - Adaptive Wavelet

UR - https://www.mendeley.com/catalogue/33fcdfe7-d0e1-3a18-9d19-b06cf4e6eb5d/

U2 - 10.1007/978-3-642-58312-4_8

DO - 10.1007/978-3-642-58312-4_8

M3 - Article in conference proceedings

SN - 3-540-67157-9

SN - 978-3540-67157-2

T3 - Lecture Notes in Computational Science and Engineering

SP - 66

EP - 72

BT - Multigrid Methods VI

A2 - Dick, Eric

A2 - Riemslagh, K.

A2 - Vierendeels, J.

PB - Springer

CY - Berlin

T2 - European Multigrid Conference 1999

Y2 - 27 September 1999 through 30 September 1999

ER -

DOI