A Lean Convolutional Neural Network for Vehicle Classification

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Standard

A Lean Convolutional Neural Network for Vehicle Classification. / Sanchez-Castro, Jonathan J.; Rodriguez-Quinonez, Julio C.; Ramirez-Hernandez, Luis R. et al.
2020 IEEE 29th International Symposium on Industrial Electronics (ISIE): 17 - 19 June, 2020, Delft, Netherlands, Proceedings. Piscataway: IEEE - Institute of Electrical and Electronics Engineers Inc., 2020. S. 1365-1369 9152274 (IEEE International Symposium on Industrial Electronics (ISIE); Band 2020).

Publikation: Beiträge in SammelwerkenAufsätze in KonferenzbändenForschungbegutachtet

Harvard

Sanchez-Castro, JJ, Rodriguez-Quinonez, JC, Ramirez-Hernandez, LR, Galaviz, G, Hernandez-Balbuena, D, Trujillo-Hernandez, G, Flores-Fuentes, W, Mercorelli, P, Hernandez-Perdomo, W, Sergiyenko, O & Gonzalez-Navarro, FF 2020, A Lean Convolutional Neural Network for Vehicle Classification. in 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE): 17 - 19 June, 2020, Delft, Netherlands, Proceedings., 9152274, IEEE International Symposium on Industrial Electronics (ISIE), Bd. 2020, IEEE - Institute of Electrical and Electronics Engineers Inc., Piscataway, S. 1365-1369, 29th IEEE International Symposium on Industrial Electronics, ISIE 2020, Delft, Niederlande, 17.06.20. https://doi.org/10.1109/ISIE45063.2020.9152274

APA

Sanchez-Castro, J. J., Rodriguez-Quinonez, J. C., Ramirez-Hernandez, L. R., Galaviz, G., Hernandez-Balbuena, D., Trujillo-Hernandez, G., Flores-Fuentes, W., Mercorelli, P., Hernandez-Perdomo, W., Sergiyenko, O., & Gonzalez-Navarro, F. F. (2020). A Lean Convolutional Neural Network for Vehicle Classification. In 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE): 17 - 19 June, 2020, Delft, Netherlands, Proceedings (S. 1365-1369). Artikel 9152274 (IEEE International Symposium on Industrial Electronics (ISIE); Band 2020). IEEE - Institute of Electrical and Electronics Engineers Inc.. https://doi.org/10.1109/ISIE45063.2020.9152274

Vancouver

Sanchez-Castro JJ, Rodriguez-Quinonez JC, Ramirez-Hernandez LR, Galaviz G, Hernandez-Balbuena D, Trujillo-Hernandez G et al. A Lean Convolutional Neural Network for Vehicle Classification. in 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE): 17 - 19 June, 2020, Delft, Netherlands, Proceedings. Piscataway: IEEE - Institute of Electrical and Electronics Engineers Inc. 2020. S. 1365-1369. 9152274. (IEEE International Symposium on Industrial Electronics (ISIE)). doi: 10.1109/ISIE45063.2020.9152274

Bibtex

@inbook{6d2be7dcc7cc444a89d7d9ea508867a2,
title = "A Lean Convolutional Neural Network for Vehicle Classification",
abstract = "Image classification is an important task in machine vision, in which vehicle classification is used for different applications like traffic analysis, autonomous driving, security, among others. Recent studies made with Convolutional Neural Networks (CNN) have shown that these networks have surpassed older algorithms like Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) in terms of accuracy, speed, and resources management. Even though that CNN have better accuracy and speed they still are heavy in resource consumption on computers which makes them not suitable to deploy on an embedded platform. This paper proposes a lean CNN that has a smaller number of parameters and still maintaining the best accuracy possible on vehicle classification.",
keywords = "Artificial Intelligence, CNN, Vehicle Classification, Engineering",
author = "Sanchez-Castro, {Jonathan J.} and Rodriguez-Quinonez, {Julio C.} and Ramirez-Hernandez, {Luis R.} and Guillermo Galaviz and Daniel Hernandez-Balbuena and Gabriel Trujillo-Hernandez and Wendy Flores-Fuentes and Paolo Mercorelli and Wilmar Hernandez-Perdomo and Oleg Sergiyenko and Gonzalez-Navarro, {Felix Fernando}",
year = "2020",
month = jun,
day = "1",
doi = "10.1109/ISIE45063.2020.9152274",
language = "English",
isbn = "978-1-7281-5636-1",
series = "IEEE International Symposium on Industrial Electronics (ISIE)",
publisher = "IEEE - Institute of Electrical and Electronics Engineers Inc.",
pages = "1365--1369",
booktitle = "2020 IEEE 29th International Symposium on Industrial Electronics (ISIE)",
address = "United States",
note = "29th IEEE International Symposium on Industrial Electronics, ISIE 2020, ISIE 2020 ; Conference date: 17-06-2020 Through 19-06-2020",
url = "http://isie2020.org/",

}

RIS

TY - CHAP

T1 - A Lean Convolutional Neural Network for Vehicle Classification

AU - Sanchez-Castro, Jonathan J.

AU - Rodriguez-Quinonez, Julio C.

AU - Ramirez-Hernandez, Luis R.

AU - Galaviz, Guillermo

AU - Hernandez-Balbuena, Daniel

AU - Trujillo-Hernandez, Gabriel

AU - Flores-Fuentes, Wendy

AU - Mercorelli, Paolo

AU - Hernandez-Perdomo, Wilmar

AU - Sergiyenko, Oleg

AU - Gonzalez-Navarro, Felix Fernando

N1 - Conference code: 29

PY - 2020/6/1

Y1 - 2020/6/1

N2 - Image classification is an important task in machine vision, in which vehicle classification is used for different applications like traffic analysis, autonomous driving, security, among others. Recent studies made with Convolutional Neural Networks (CNN) have shown that these networks have surpassed older algorithms like Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) in terms of accuracy, speed, and resources management. Even though that CNN have better accuracy and speed they still are heavy in resource consumption on computers which makes them not suitable to deploy on an embedded platform. This paper proposes a lean CNN that has a smaller number of parameters and still maintaining the best accuracy possible on vehicle classification.

AB - Image classification is an important task in machine vision, in which vehicle classification is used for different applications like traffic analysis, autonomous driving, security, among others. Recent studies made with Convolutional Neural Networks (CNN) have shown that these networks have surpassed older algorithms like Support Vector Machine (SVM) and K-Nearest Neighbor (KNN) in terms of accuracy, speed, and resources management. Even though that CNN have better accuracy and speed they still are heavy in resource consumption on computers which makes them not suitable to deploy on an embedded platform. This paper proposes a lean CNN that has a smaller number of parameters and still maintaining the best accuracy possible on vehicle classification.

KW - Artificial Intelligence

KW - CNN

KW - Vehicle Classification

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85089497965&partnerID=8YFLogxK

UR - https://www.mendeley.com/catalogue/fe00f811-7a5d-326f-85ef-354bee8929b1/

U2 - 10.1109/ISIE45063.2020.9152274

DO - 10.1109/ISIE45063.2020.9152274

M3 - Article in conference proceedings

AN - SCOPUS:85089497965

SN - 978-1-7281-5636-1

T3 - IEEE International Symposium on Industrial Electronics (ISIE)

SP - 1365

EP - 1369

BT - 2020 IEEE 29th International Symposium on Industrial Electronics (ISIE)

PB - IEEE - Institute of Electrical and Electronics Engineers Inc.

CY - Piscataway

T2 - 29th IEEE International Symposium on Industrial Electronics, ISIE 2020

Y2 - 17 June 2020 through 19 June 2020

ER -

DOI

Zuletzt angesehen

Publikationen

  1. Do connectives improve the level of understandability in mathematical reality-based tasks?
  2. Temperature control in Peltier cells comparing sliding mode control and PID controllers
  3. Interplays between relational and instrumental values
  4. Comparison of modeling approaches based on the microstructure of thermally sprayed coatings
  5. rSOESGOPE Method Applied to Four-Tank System Modeling
  6. Non-invariance? An Overstated Problem With Misconceived Causes
  7. Analytics and Intuition in the Process of Selecting Talent
  8. Using rating scales for the assessment of physical self-concept
  9. Principled Interpolation in Normalizing Flows
  10. Learning with summaries
  11. Facing Up to Third Party Liability for Space Activities
  12. Extraterritorial Asylum Processing. The Libya-Niger Emergency Transit Mechanism
  13. Comparison of Backpropagation and Kalman Filter-based Training for Neural Networks
  14. How much can we learn about voluntary climate action from behavior in public goods games?
  15. A dynamic perspective on affect and creativity
  16. Investigating Factors on R estorative Sleep Quality and its Relationship with Personal Work Performance - An Analysis of Diary Data
  17. An introduction to sliding mode control for interdisciplinary education
  18. Leaf trait variation within individuals mediates the relationship between tree species richness and productivity
  19. Sustainability-oriented technology exploration: managerial values, ambidextrous design, and separation drift
  20. Norms and variation in L2 pragmatics
  21. Determinants in the online distribution of digital content
  22. Modeling of 3D fluid-structure-interaction during in-situ hybridization of double-curved fiber-metal-laminates
  23. Co-production of nature's contributions to people
  24. Out of the box
  25. Logistische Lageranalyse und Methodenvalidierung
  26. An Unusual Encounter with Oneself
  27. Introduction to the Special Issue Section
  28. An Approach for Ex-Post-Facto Analysis of Knowledge Graph-Driven Chatbots – The DBpedia Chatbot
  29. Effects of strategy instructions on learning from text and pictures
  30. The dispositive factor in a system of inventory-controlled production
  31. Effects of welding conditions on microstructural transformations and mechanical properties in AE42-HP friction welded joints
  32. Digital and IT-Enabled Organizational Transformation - Where Do We Go From Here?