Professur für Werkstoffmechanik

Organisation: Professur

Organisationsprofil

Die Professur für Werkstoffmechanik, ist eine Shared-Professur gemeinsam mit dem Helmholtz-Zentrum Hereon GmbH. Diese beschäftigt sich insbesondere mit der digitalen Modellierung technologischer Produktionsprozesse und Werkstoffe. Hierbei sind insbesondere lokale Modifikationsprozesse, Festphase Fügeprozesse und Umformprozesse zu nennen. Die hierfür eingesetzten Modellierungsansätze reichen von der Mikromechanik (z.B. Kristallplastizität und Phasenfeldsimulationen) über die Kontinuumsmechanik zur Beschreibung des Werkstoffverhaltens bis hin zu Ansätzen für komplexe Prozesssimulationen.

 

Forschungsschwerpunkte

Ein Schwerpunkt der Aktivitäten der Professur an der Leuphana liegt dabei auf der Entwicklung und Anwendung von mathematischen Modellen (Materialmodellen) zur Beschreibung der Mikrostrukturentwicklung und des Verformungsverhaltens von verschiedenen metallischen Werkstoffen über mehrere Längenskalen hinweg. Diese Entwicklungen erfolgen oftmals in enger Verknüpfung mit experimentellen Arbeiten am Helmholtz-Zentrum Geesthacht. Auf welcher Längen- und Zeitskala die maßgeblich relevanten Prozesse im Material ablaufen bzw. modelliert werden, hängt vom Werkstoff, vom Prozess sowie vom Bauteil ab. Über die Modellierung einer Vielzahl solcher Materialsysteme hat die Arbeitsgruppe einen profunden Erfahrungsschatz über die letzten Jahre aufgebaut. Neben intensiven Studien der Verformungsvorgänge in metallischen Werkstoffen hat sich die Arbeitsgruppe dabei auch mit weiteren Materialsystemen, wie z.B. metallischen Gläsern und Polymeren, auseinandergesetzt.

Am Helmholtz-Zentrum Hereon beschäftigt sich die Professur insbesondere mit der experimentellen Untersuchung und Prozessmodellierung von Festphase Fügeverfahren und lokal wirkenden Fertigungsverfahren. Hier seien beispielhaft Fügeverfahren wie das Rührreibschweißen und Laserstrahlschweißen sowie Verfahren der additiven Fertigung, wie das Reibauftragschweißen und das Laserauftragschweißen, genannt. Hinzu kommen lokale Modifikationsverfahren zum gezielten Einstellen von Eigenspannungen (Residual Stress Engineering), wie z.B. das Laser Shock Peening und das Hammerpeening. Ein grundsätzliches Ziel der Forschungsaktivitäten ist es, das Gesamtsystem Prozess-Mikrostruktur-Eigenschaft mittels einer Kombination aus experimentellen und simulativen Ansätzen zu untersuchen, so dass hierdurch ein verbessertes physikalisches Verständnis erreicht werden kann. Durch eine gezielte Adaptierung der Prozessparameter können die gewonnenen Erkenntnisse zu einer Optimierung des Werkstoff- oder Strukturverhaltens, z.B. in Hinblick auf das Deformations- und Versagensverhalten, genutzt werden.

Die Professur ist aktiv in verschiedenen nationalen und internationalen Organisatoren, wie z.B. der GAMM (Gesellschaft für angewandte Mathematik und Mechanik e.V.) oder dem ZHM (Zentrum für Hochleistungsmaterialien).

Wesentliche Schwerpunkte in der Lehre liegen im Bereich der Technischen Mechanik, der Werkstoffmodellierung sowie der Vermittlung weiterer ingenieurwissenschaftlicher Grundlagen.

  1. Erschienen

    Crack closure mechanisms in residual stress fields generated by laser shock peening: A combined experimental-numerical approach

    Keller, S., Horstmann, M., Kashaev, N. & Klusemann, B., 01.11.2019, in: Engineering Fracture Mechanics. 221, 15 S., 106630.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

  2. Erschienen

    Two-step simulation approach for laser shock peening

    Pozdnyakov, V., Keller, S., Kashaev, N., Klusemann, B. & Oberrath, J., 11.2019, in: Proceedings in applied mathematics and mechanics. 19, 1, 2 S., e201900497.

    Publikation: Beiträge in ZeitschriftenKonferenzaufsätze in FachzeitschriftenForschungbegutachtet

  3. Erschienen

    Numerical Investigation of the Effect of Rolling on the Localized Stress and Strain Induction for Wire + Arc Additive Manufactured Structures

    Abbaszadeh, M., Hönnige, J. R., Martina, F., Neto, L., Kashaev, N., Colegrove, P., Williams, S. & Klusemann, B., 15.08.2019, in: Journal of Materials Engineering and Performance. 28, 8, S. 4931-4942 12 S.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

  4. Erschienen

    Thermal analysis of wire-based direct energy deposition of Al-Mg using different laser irradiances

    Froend, M., Ventzke, V., Kashaev, N., Klusemann, B. & Enz, J., 01.10.2019, in: Additive Manufacturing. 29, UNSP 100800.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

  5. Erschienen

    Effect of laser peening process parameters and sequences on residual stress profiles

    Kallien, Z., Keller, S., Ventzke, V., Kashaev, N. & Klusemann, B., 04.06.2019, in: Metals. 9, 6, 14 S., 655.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

  6. Erschienen

    Fundamental study on additive manufacturing of aluminum alloys by friction surfacing layer deposition

    Shen, J., Hanke, S., Roos, A., Santos, J. F. D. & Klusemann, B., 02.07.2019, in: AIP Conference Proceedings. 2113, 1, 6 S., 150015.

    Publikation: Beiträge in ZeitschriftenKonferenzaufsätze in FachzeitschriftenForschungbegutachtet

  7. Erschienen

    Numerical study of rolling process on the plastic strain distribution in wire + arc additive manufactured Ti-6Al-4V

    Abbaszadeh, M., Hönnige, J., Martina, F., Kashaev, N., Williams, S. W. & Klusemann, B., 02.07.2019, in: AIP Conference Proceedings. 2113, 1, 6 S., 150019.

    Publikation: Beiträge in ZeitschriftenKonferenzaufsätze in FachzeitschriftenForschungbegutachtet

  8. Erschienen

    Application of design of experiments for laser shock peening process optimization

    Chupakhin, S., Klusemann, B., Huber, N. & Kashaev, N., 19.06.2019, in: The International Journal of Advanced Manufacturing Technology. 102, 5-8, S. 1567-1581 15 S.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet

  9. Erschienen

    A Review of the Application of Machine Learning and Data Mining Approaches in Continuum Materials Mechanics

    Bock, F. E., Aydin, R. C., Cyron, C. C., Huber, N., Kalidindi, S. R. & Klusemann, B., 15.05.2019, in: Frontiers in Materials. 6, 23 S., 110.

    Publikation: Beiträge in ZeitschriftenÜbersichtsarbeitenForschung

  10. Erschienen

    Experimentally validated multi-step simulation strategy to predict the fatigue crack propagation rate in residual stress fields after laser shock peening

    Keller, S., Horstmann, M., Kashaev, N. & Klusemann, B., 01.07.2019, in: International Journal of Fatigue. 124, S. 265-276 12 S.

    Publikation: Beiträge in ZeitschriftenZeitschriftenaufsätzeForschungbegutachtet