Using machine learning to identify important predictors of COVID-19 infection prevention behaviors during the early phase of the pandemic

Research output: Journal contributionsJournal articlesResearchpeer-review

Authors

  • Caspar J. Van Lissa
  • Ben Gützkow
  • Michelle R. vanDellen
  • Arobindu Dash
  • Tim Draws
  • Wolfgang Stroebe
  • N. Pontus Leander
  • Maximilian Agostini
  • Andrii Grygoryshyn
  • Jannis Kreienkamp
  • Clara S. Vetter
  • Georgios Abakoumkin
  • Jamilah Hanum Abdul Khaiyom
  • Vjollca Ahmedi
  • Handan Akkas
  • Carlos A. Almenara
  • Mohsin Atta
  • Sabahat Cigdem Bagci
  • Sima Basel
  • Edona Berisha Kida
  • And 85 others
  • Allan B.I. Bernardo
  • Nicholas R. Buttrick
  • Phatthanakit Chobthamkit
  • Hoon Seok Choi
  • Mioara Cristea
  • Sára Csaba
  • Kaja Damnjanović
  • Ivan Danyliuk
  • Daniela Di Santo
  • Karen M. Douglas
  • Violeta Enea
  • Daiane G. Faller
  • Gavan Fitzsimons
  • Alexandra Gheorghiu
  • Ángel Gómez
  • Ali Hamaidia
  • Qing Han
  • Mai Helmy
  • Joevarian Hudiyana
  • Bertus F. Jeronimus
  • Ding Yu Jiang
  • Veljko Jovanović
  • Željka Kamenov
  • Anna Kende
  • Shian Ling Keng
  • Tra Thi Thanh Kieu
  • Yasin Koc
  • Kamila Kovyazina
  • Inna Kozytska
  • Joshua Krause
  • Arie W. Kruglanksi
  • Anton Kurapov
  • Maja Kutlaca
  • Nóra Anna Lantos
  • Edward P. Lemay
  • Cokorda Bagus Jaya Lesmana
  • Winnifred R. Louis
  • Adrian Lueders
  • Najma Iqbal Malik
  • Anton Martinez
  • Kira O. McCabe
  • Jasmina Mehulić
  • Mirra Noor Milla
  • Idris Mohammed
  • Erica Molinario
  • Manuel Moyano
  • Hayat Muhammad
  • Silvana Mula
  • Hamdi Muluk
  • Solomiia Myroniuk
  • Reza Najafi
  • Claudia F. Nisa
  • Boglárka Nyúl
  • Paul A. O’Keefe
  • Jose Javier Olivas Osuna
  • Evgeny N. Osin
  • Joonha Park
  • Gennaro Pica
  • Antonio Pierro
  • Jonas H. Rees
  • Anne Margit Reitsema
  • Elena Resta
  • Marika Rullo
  • Michelle K. Ryan
  • Adil Samekin
  • Pekka Santtila
  • Edyta M. Sasin
  • Birga M. Schumpe
  • Heyla A. Selim
  • Michael Vicente Stanton
  • Samiah Sultana
  • Robbie M. Sutton
  • Eleftheria Tseliou
  • Akira Utsugi
  • Jolien Anne van Breen
  • Kees Van Veen
  • Alexandra Vázquez
  • Robin Wollast
  • Victoria Wai lan Yeung
  • Somayeh Zand
  • Iris Lav Žeželj
  • Bang Zheng
  • Andreas Zick
  • Claudia Zúñiga
  • Jocelyn J. Bélanger

Before vaccines for coronavirus disease 2019 (COVID-19) became available, a set of infection-prevention behaviors constituted the primary means to mitigate the virus spread. Our study aimed to identify important predictors of this set of behaviors. Whereas social and health psychological theories suggest a limited set of predictors, machine-learning analyses can identify correlates from a larger pool of candidate predictors. We used random forests to rank 115 candidate correlates of infection-prevention behavior in 56,072 participants across 28 countries, administered in March to May 2020. The machine-learning model predicted 52% of the variance in infection-prevention behavior in a separate test sample—exceeding the performance of psychological models of health behavior. Results indicated the two most important predictors related to individual-level injunctive norms. Illustrating how data-driven methods can complement theory, some of the most important predictors were not derived from theories of health behavior—and some theoretically derived predictors were relatively unimportant.

Original languageEnglish
Article number100482
JournalPatterns
Volume3
Issue number4
Number of pages14
DOIs
Publication statusPublished - 08.04.2022

Bibliographical note

Publisher Copyright:
© 2022 The Author(s)

    Research areas

  • COVID-19, Economic burden, Health behaviors, Infection risk, random forest, social norms, DSML2: Proof-of-concept: Data science output has been formulated, implemented, and tested for one domain/problem, machine learning, public goods dilemma, health behaviors
  • Health sciences

Documents

DOI

Recently viewed

Publications

  1. Development of a robust classifier of freshwater residence in barramundi (Lates calcarifer) life histories using elemental ratios in scales and boosted regression trees
  2. Pushing the Boundaries
  3. What do employers pay for employees’ complex problem solving skills?
  4. Construct Clean-Up in Proactivity Research
  5. Germination performance of native and non-native Ulmus pumila populations
  6. Stephanus
  7. Bifurcation loads of beams of glued-laminated timber with intermediate lateral supports
  8. "The (real) world is not enough:" Motivational drivers and user behavior in virtual worlds
  9. An EEG frequency tagging study on biological motion perception in children with DCD
  10. Measurements of atmospheric mercury with high time resolution
  11. Successful Application of Adaptive Emotion Regulation Skills Predicts the Subsequent Reduction of Depressive Symptom Severity but neither the Reduction of Anxiety nor the Reduction of General Distress during the Treatment of Major Depressive Disorder
  12. Application of stress intensity factor superposition in residual stress fields considering crack closure
  13. Analysis of mechanical properties and microstructure of single and double-pass friction stir welded T-joints for aluminium stiffened Panels
  14. Self-determined or non-self-determined? Exploring consumer motivation for sustainable food choices
  15. The impact of supervisory board composition on CSR reporting
  16. Conceptualising the Assessment of Eco-Innovation Performance
  17. Adaptive acquisition planning for visual inspection in remanufacturing using reinforcement learning
  18. Die Plattform als Fabrik
  19. Digital guided self-help for eating disorders
  20. Swissness Communication and its Impact on Consumer-Brand Relationships
  21. Toward a Production-Oriented Imagology
  22. How General is Trust in "Most People" ?
  23. Evolutionäres Management für den ewigen Frühling
  24. Springback compensation by superposition of stress in air bending
  25. Sturheit siegt
  26. Die Erinnerung im Gepäck
  27. "Their deaths are not elegant"