Quasi-in-situ observation of microstructure at the friction interface: Shear deformation, dynamic recrystallization and mechanical responses during friction welding process

Research output: Journal contributionsJournal articlesResearch

Standard

Quasi-in-situ observation of microstructure at the friction interface: Shear deformation, dynamic recrystallization and mechanical responses during friction welding process. / Jin, Feng; Fu, Banglong; Shen, Junjun et al.
In: Materials Characterization, Vol. 200, 112911, 01.06.2023.

Research output: Journal contributionsJournal articlesResearch

Harvard

APA

Vancouver

Bibtex

@article{fac1be8fd1be4b2d96c92a69eaf32724,
title = "Quasi-in-situ observation of microstructure at the friction interface: Shear deformation, dynamic recrystallization and mechanical responses during friction welding process",
abstract = "Friction based joining processes are monitored and controlled according to the collectable and measurable mechanical responses, such as torque or temperature, during the process. These are a result of the underlying physical microstructural mechanism during the process, where joints are formed under shear deformation (SD) and/or dynamic recrystallization (DRX). To ensure a first quality assessment of the joints during processing, it is critical to precisely investigate the relation between (macro)-mechanical and microstructural responses (SD and DRX). In the present study, the transition from SD to DRX in friction welding has been focused and quasi in-situ observed by {\textquoteleft}stop - action{\textquoteright} rotary friction welding (RFW) experiments coupled with electron back-scattered diffraction (EBSD) analysis using pipe structures, which clarifies the characteristics of the mechanical response. Further RFW experiments with different parameters were conducted to obtain a suitable relation that correlate the DRX transition temperatures to the welding parameters. Thereafter, further {\textquoteleft}stop - action{\textquoteright} RFW experiments were performed on rod structures to investigate the spatial - temporal distribution of SD - DRX at the friction interface and accordingly the friction torque characteristics. The results show that the transition from SD to DRX takes place at the peak torque (PT) and the temperature inflection point (TIP). The TIP of pipe-structure specimens is the critical DRX temperature during FW, which is dominated by friction linear speed. The PT is the threshold that distinguishes the dominating mechanism, SD or DRX, at the welding interface when welding rod structures.",
keywords = "Friction welding, Shear deformation, Dynamic recrystallization, Mechanical responses, Stop-action, Electron back-scattered diffraction, Engineering",
author = "Feng Jin and Banglong Fu and Junjun Shen and Jinglong Li and Wenya Li and Santos, {Jorge F. dos} and Benjamin Klusemann",
note = "Declaration of Competing Interest None. Acknowledgements This work was supported by the research fund of the National Natural Science Foundations of China (Grant No. 52205416) and the China Postdoctoral Science Foundation (2021M692627). Feng Jin is grateful for financial support from the Chinese Scholarship Council (CSC 202106290001). The authors declare they have no conflict of interest. Publisher Copyright: {\textcopyright} 2023 Elsevier Inc.",
year = "2023",
month = jun,
day = "1",
doi = "10.1016/j.matchar.2023.112911",
language = "English",
volume = "200",
journal = "Materials Characterization",
issn = "1044-5803",
publisher = "Elsevier Inc.",

}

RIS

TY - JOUR

T1 - Quasi-in-situ observation of microstructure at the friction interface

T2 - Shear deformation, dynamic recrystallization and mechanical responses during friction welding process

AU - Jin, Feng

AU - Fu, Banglong

AU - Shen, Junjun

AU - Li, Jinglong

AU - Li, Wenya

AU - Santos, Jorge F. dos

AU - Klusemann, Benjamin

N1 - Declaration of Competing Interest None. Acknowledgements This work was supported by the research fund of the National Natural Science Foundations of China (Grant No. 52205416) and the China Postdoctoral Science Foundation (2021M692627). Feng Jin is grateful for financial support from the Chinese Scholarship Council (CSC 202106290001). The authors declare they have no conflict of interest. Publisher Copyright: © 2023 Elsevier Inc.

PY - 2023/6/1

Y1 - 2023/6/1

N2 - Friction based joining processes are monitored and controlled according to the collectable and measurable mechanical responses, such as torque or temperature, during the process. These are a result of the underlying physical microstructural mechanism during the process, where joints are formed under shear deformation (SD) and/or dynamic recrystallization (DRX). To ensure a first quality assessment of the joints during processing, it is critical to precisely investigate the relation between (macro)-mechanical and microstructural responses (SD and DRX). In the present study, the transition from SD to DRX in friction welding has been focused and quasi in-situ observed by ‘stop - action’ rotary friction welding (RFW) experiments coupled with electron back-scattered diffraction (EBSD) analysis using pipe structures, which clarifies the characteristics of the mechanical response. Further RFW experiments with different parameters were conducted to obtain a suitable relation that correlate the DRX transition temperatures to the welding parameters. Thereafter, further ‘stop - action’ RFW experiments were performed on rod structures to investigate the spatial - temporal distribution of SD - DRX at the friction interface and accordingly the friction torque characteristics. The results show that the transition from SD to DRX takes place at the peak torque (PT) and the temperature inflection point (TIP). The TIP of pipe-structure specimens is the critical DRX temperature during FW, which is dominated by friction linear speed. The PT is the threshold that distinguishes the dominating mechanism, SD or DRX, at the welding interface when welding rod structures.

AB - Friction based joining processes are monitored and controlled according to the collectable and measurable mechanical responses, such as torque or temperature, during the process. These are a result of the underlying physical microstructural mechanism during the process, where joints are formed under shear deformation (SD) and/or dynamic recrystallization (DRX). To ensure a first quality assessment of the joints during processing, it is critical to precisely investigate the relation between (macro)-mechanical and microstructural responses (SD and DRX). In the present study, the transition from SD to DRX in friction welding has been focused and quasi in-situ observed by ‘stop - action’ rotary friction welding (RFW) experiments coupled with electron back-scattered diffraction (EBSD) analysis using pipe structures, which clarifies the characteristics of the mechanical response. Further RFW experiments with different parameters were conducted to obtain a suitable relation that correlate the DRX transition temperatures to the welding parameters. Thereafter, further ‘stop - action’ RFW experiments were performed on rod structures to investigate the spatial - temporal distribution of SD - DRX at the friction interface and accordingly the friction torque characteristics. The results show that the transition from SD to DRX takes place at the peak torque (PT) and the temperature inflection point (TIP). The TIP of pipe-structure specimens is the critical DRX temperature during FW, which is dominated by friction linear speed. The PT is the threshold that distinguishes the dominating mechanism, SD or DRX, at the welding interface when welding rod structures.

KW - Friction welding

KW - Shear deformation

KW - Dynamic recrystallization

KW - Mechanical responses

KW - Stop-action

KW - Electron back-scattered diffraction

KW - Engineering

UR - http://www.scopus.com/inward/record.url?scp=85152147760&partnerID=8YFLogxK

U2 - 10.1016/j.matchar.2023.112911

DO - 10.1016/j.matchar.2023.112911

M3 - Journal articles

VL - 200

JO - Materials Characterization

JF - Materials Characterization

SN - 1044-5803

M1 - 112911

ER -

Recently viewed

Publications

  1. Incremental sheet forming with active medium
  2. Precrop functional group identity affects yield of winter barley but less so high carbon amendments in a mesocosm experiment
  3. Learning in the "Third Space"
  4. Dynamic capabilities and routinization
  5. oREV: An item response theory-based open receptive vocabulary task for 3- to 8-year-old children
  6. Tree diversity increases robustness of multi-trophic interactions
  7. Robustness of coherent sets computations
  8. On the role of linguistic features for comprehension and learning from STEM texts. A meta-analysis
  9. Exploring the implications of the value concept for performance assessment of sustainable business models
  10. How development leads to democracy
  11. Where is (im)balance? Necessity and construction of evaluated cut-off points for effort-reward imbalance and overcommitment
  12. Extraction of information from invoices - challenges in the extraction pipeline
  13. Der Sturm
  14. Tree species and genetic diversity increase productivity via functional diversity and trophic feedbacks
  15. Fluid-structure interaction modelling of a soft pneumatic actuator
  16. Anticipated imitation of multiple agents
  17. Leaf trait variation within individuals mediates the relationship between tree species richness and productivity
  18. Operationalizing Network Theory for Ecosystem Service Assessments
  19. Robust and Optimal Control Designed for Autonomous Surface Vessel Prototypes
  20. Kontext
  21. Quand la mémoire devient image de souvenier
  22. Case study: The development of a multi-material heat sink by Additive Manufacturing using Aerosint technology
  23. Microstructure and mechanical properties of Mg-3Sn-1Ca reinforced with AlN nano-particles
  24. Evaluating the effectiveness of retention forestry to enhance biodiversity in production forests of Central Europe using an interdisciplinary, multi-scale approach
  25. Headway Control and Comfort in Vehicle Automation
  26. Parameters, concepts and the terminology of outer space law: a review of the essential facilities served by outer space activities and the rules of interpretation for treaty law and soft law guidelines.